121 research outputs found

    A matrix solution to pentagon equation with anticommuting variables

    Full text link
    We construct a solution to pentagon equation with anticommuting variables living on two-dimensional faces of tetrahedra. In this solution, matrix coordinates are ascribed to tetrahedron vertices. As matrix multiplication is noncommutative, this provides a "more quantum" topological field theory than in our previous works

    Geometric torsions and invariants of manifolds with triangulated boundary

    Full text link
    Geometric torsions are torsions of acyclic complexes of vector spaces which consist of differentials of geometric quantities assigned to the elements of a manifold triangulation. We use geometric torsions to construct invariants for a manifold with a triangulated boundary. These invariants can be naturally united in a vector, and a change of the boundary triangulation corresponds to a linear transformation of this vector. Moreover, when two manifolds are glued by their common boundary, these vectors undergo scalar multiplication, i.e., they work according to M. Atiyah's axioms for a topological quantum field theory.Comment: 18 pages, 4 figure

    Geometric torsions and an Atiyah-style topological field theory

    Full text link
    The construction of invariants of three-dimensional manifolds with a triangulated boundary, proposed earlier by the author for the case when the boundary consists of not more than one connected component, is generalized to any number of components. These invariants are based on the torsion of acyclic complexes of geometric origin. The relevant tool for studying our invariants turns out to be F.A. Berezin's calculus of anti-commuting variables; in particular, they are used in the formulation of the main theorem of the paper, concerning the composition of invariants under a gluing of manifolds. We show that the theory obeys a natural modification of M. Atiyah's axioms for anti-commuting variables.Comment: 15 pages, English translation (with minor corrections) of the Russian version. The latter is avaible here as v

    Form-factors in the Baxter-Bazhanov-Stroganov model I: Norms and matrix elements

    Full text link
    We continue our investigation of the Z_N-Baxter-Bazhanov-Stroganov model using the method of separation of variables [nlin/0603028]. In this paper we calculate the norms and matrix elements of a local Z_N-spin operator between eigenvectors of the auxiliary problem. For the norm the multiple sums over the intermediate states are performed explicitly. In the case N=2 we solve the Baxter equation and obtain form-factors of the spin operator of the periodic Ising model on a finite lattice.Comment: 24 page

    Tetrahedron and 3D reflection equations from quantized algebra of functions

    Full text link
    Soibelman's theory of quantized function algebra A_q(SL_n) provides a representation theoretical scheme to construct a solution of the Zamolodchikov tetrahedron equation. We extend this idea originally due to Kapranov and Voevodsky to A_q(Sp_{2n}) and obtain the intertwiner K corresponding to the quartic Coxeter relation. Together with the previously known 3-dimensional (3D) R matrix, the K yields the first ever solution to the 3D analogue of the reflection equation proposed by Isaev and Kulish. It is shown that matrix elements of R and K are polynomials in q and that there are combinatorial and birational counterparts for R and K. The combinatorial ones arise either at q=0 or by tropicalization of the birational ones. A conjectural description for the type B and F_4 cases is also given.Comment: 26 pages. Minor correction

    Form-factors in the Baxter-Bazhanov-Stroganov model II: Ising model on the finite lattice

    Full text link
    We continue our investigation of the Baxter-Bazhanov-Stroganov or \tau^{(2)}-model using the method of separation of variables [nlin/0603028,arXiv:0708.4342]. In this paper we derive for the first time the factorized formula for form-factors of the Ising model on a finite lattice conjectured previously by A.Bugrij and O.Lisovyy in [arXiv:0708.3625,arXiv:0708.3643]. We also find the matrix elements of the spin operator for the finite quantum Ising chain in a transverse field.Comment: 25 pages; sections 8 and A.2 are extended, 2 related references are adde

    Transfer matrix eigenvectors of the Baxter-Bazhanov-Stroganov τ2\tau_2-model for N=2

    Get PDF
    We find a representation of the row-to-row transfer matrix of the Baxter-Bazhanov-Stroganov τ2\tau_2-model for N=2 in terms of an integral over two commuting sets of grassmann variables. Using this representation, we explicitly calculate transfer matrix eigenvectors and normalize them. It is also shown how form factors of the model can be expressed in terms of determinants and inverses of certain Toeplitz matrices.Comment: 23 page
    corecore