422 research outputs found

    Coulomb interaction and magnetic catalysis in the quantum Hall effect in graphene

    Full text link
    The dynamics of symmetry breaking responsible for lifting the degeneracy of the Landau levels in the integer quantum Hall effect in graphene is studied in a low-energy model with the Coulomb interaction. The gap equation for Dirac quasiparticles is analyzed for both the lowest and higher Landau levels, taking into account the Landau levels mixing. It is shown that the characteristic feature of the long-range Coulomb interaction is the decrease of the gap parameters with increasing the Landau level index nn ("running" gaps). The renormalization (running) of the Fermi velocity as a function of nn is also studied. The solutions of the gap equation reproduce correctly the experimentally observed integer quantum Hall plateaus in graphene in strong magnetic fields.Comment: 22 pages, 5 figures; Final version published in the Proceedings of the 2010 Nobel Symposium on Graphene and Quantum Matte

    Subexponential estimations in Shirshov's height theorem (in English)

    Full text link
    In 1993 E. I. Zelmanov asked the following question in Dniester Notebook: "Suppose that F_{2, m} is a 2-generated associative ring with the identity x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential growth?" We show that the nilpotency degree of l-generated associative algebra with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l (nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by this result. It is the consequence of one fact, which is based on combinatorics of words. Let l, n and d>n be positive integers. Then all the words over alphabet of cardinality l which length is greater than Psi(n,d,l) are either n-divided or contain d-th power of subword, where a word W is n-divided, if it can be represented in the following form W=W_0 W_1...W_n such that W_1 >' W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov proved that the set of non n-divided words over alphabet of cardinality l has bounded height h over the set Y consisting of all the words of degree <n. Original Shirshov's estimation was just recursive, in 1982 double exponent was obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation. We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55

    Electron screening and excitonic condensation in double-layer graphene systems

    Full text link
    We theoretically investigate the possibility of excitonic condensation in a system of two graphene monolayers separated by an insulator, in which electrons and holes in the layers are induced by external gates. In contrast to the recent studies of this system, we take into account the screening of the interlayer Coulomb interaction by the carriers in the layers, and this drastically changes the result. Due to a large number of electron species in the system (two projections of spin, two valleys, and two layers) and to the suppression of backscattering in graphene, the maximum possible strength of the screened Coulomb interaction appears to be quite small making the weak-coupling treatment applicable. We calculate the mean-field transition temperature for a clean system and demonstrate that its highest possible value Tcmax107ϵF1mKT_c^\text{max}\sim 10^{-7}\epsilon_F\lesssim 1 \text{mK} is extremely small (ϵF\epsilon_F is the Fermi energy). In addition, any sufficiently short-range disorder with the scattering time τ/Tcmax\tau \lesssim \hbar /T_c^\text{max} would suppress the condensate completely. Our findings renders experimental observation of excitonic condensation in the above setup improbable even at very low temperatures.Comment: 4+ pages, 3 figure

    Bose-Einstein condensation of quasiparticles in graphene

    Full text link
    The collective properties of different quasiparticles in various graphene based structures in high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and superfluidity of 2D spatially indirect magnetoexcitons in two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the excitonic density but decreasing functions of magnetic field and the interlayer separation. The instability of the ground state of the interacting 2D indirect magnetoexcitons in a slab of superlattice with alternating electron and hole graphene layers (GLs) is established. The stable system of indirect 2D magnetobiexcitons, consisting of pair of indirect excitons with opposite dipole moments, is considered in graphene superlattice. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition for magnetobiexcitons in graphene superlattice are obtained. Besides, the BEC of excitonic polaritons in GL embedded in a semiconductor microcavity in high magnetic field is predicted. While superfluid phase in this magnetoexciton polariton system is absent due to vanishing of magnetoexciton-magnetoexciton interaction in a single layer in the limit of high magnetic field, the critical temperature of BEC formation is calculated. The essential property of magnetoexcitonic systems based on graphene (in contrast, e.g., to a quantum well) is stronger influence of magnetic field and weaker influence of disorder. Observation of the BEC and superfluidity of 2D quasiparticles in graphene in high magnetic field would be interesting confirmation of the phenomena we have described.Comment: 13 pages, 5 figure

    Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    Full text link
    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.Comment: 38 pages, 19 figures,changed conten

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog
    corecore