385 research outputs found
UNOCCUPIED ELECTRONIC STATES OF POTASSIUM AND SODIUM ON Ag(110)
Unoccupied electronic states induced by alkali adsorption on a Ag(11O) surface were investigated by inverse photoemission. In addition to electrostatically induced level shifts the formation of energy bands in periodic overlayers was monitored. Despite their chemical similarity considerable differences exist between potassium and sodium induced empty electronic states. The relation of the observed unoccupied bands to the two-dimensional bandstructure of an unsupported alkali metal layer is discussed
Image resonance in the many-body density of states at a metal surface
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account
Lifetimes of image-potential states on copper surfaces
The lifetime of image states, which represent a key quantity to probe the
coupling of surface electronic states with the solid substrate, have been
recently determined for quantum numbers on Cu(100) by using
time-resolved two-photon photoemission in combination with the coherent
excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We
here report theoretical investigations of the lifetime of image states on
copper surfaces. We evaluate the lifetimes from the knowledge of the
self-energy of the excited quasiparticle, which we compute within the GW
approximation of many-body theory. Single-particle wave functions are obtained
by solving the Schr\"odinger equation with a realistic one-dimensional model
potential, and the screened interaction is evaluated in the random-phase
approximation (RPA). Our results are in good agreement with the experimentally
determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
Electron-correlation effects in appearance-potential spectra of Ni
Spin-resolved and temperature-dependent appearance-potential spectra of
ferromagnetic Nickel are measured and analyzed theoretically. The Lander
self-convolution model which relates the line shape to the unoccupied part of
the local density of states turns out to be insufficient. Electron correlations
and orbitally resolved transition-matrix elements are shown to be essential for
a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press
Fluctuations of company yearly profits versus scaled revenue: Fat tail distribution of Levy type
We analyze annual revenues and earnings data for the 500 largest-revenue U.S.
companies during the period 1954-2007. We find that mean year profits are
proportional to mean year revenues, exception made for few anomalous years,
from which we postulate a linear relation between company expected mean profit
and revenue. Mean annual revenues are used to scale both company profits and
revenues. Annual profit fluctuations are obtained as difference between actual
annual profit and its expected mean value, scaled by a power of the revenue to
get a stationary behavior as a function of revenue. We find that profit
fluctuations are broadly distributed having approximate power-law tails with a
Levy-type exponent , from which we derive the associated
break-even probability distribution. The predictions are compared with
empirical data.Comment: 6 pages, 6 figure
Self-energy of image states on copper surfaces
We report extensive calculations of the imaginary part of the electron
self-energy in the vicinity of the (100) and (111) surfaces of Cu. The
quasiparticle self-energy is computed by going beyond a free-electron
description of the metal surface, either within the GW approximation of
many-body theory or with inclusion, within the GW approximation, of
short-range exchange-correlation effects. Calculations of the decay rate of the
first three image states on Cu(100) and the first image state on Cu(111) are
also reported, and the impact of both band structure and many-body effects on
the electron relaxation process is discussed.Comment: 8 pages, 5 figures, to appear in Phys. Rev.
Bayesian Inference in Processing Experimental Data: Principles and Basic Applications
This report introduces general ideas and some basic methods of the Bayesian
probability theory applied to physics measurements. Our aim is to make the
reader familiar, through examples rather than rigorous formalism, with concepts
such as: model comparison (including the automatic Ockham's Razor filter
provided by the Bayesian approach); parametric inference; quantification of the
uncertainty about the value of physical quantities, also taking into account
systematic effects; role of marginalization; posterior characterization;
predictive distributions; hierarchical modelling and hyperparameters; Gaussian
approximation of the posterior and recovery of conventional methods, especially
maximum likelihood and chi-square fits under well defined conditions; conjugate
priors, transformation invariance and maximum entropy motivated priors; Monte
Carlo estimates of expectation, including a short introduction to Markov Chain
Monte Carlo methods.Comment: 40 pages, 2 figures, invited paper for Reports on Progress in Physic
Interferon β-1a in relapsing multiple sclerosis: four-year extension of the European IFNβ-1a Dose-C omparison Study
Background: Multiple sclerosis (MS) is a chronic disease requiring long-term monitoring of treatment. Objective: To assess the four-year clinical efficacy of intramuscular (IM) IFNb-1a in patients with relapsing MS from the European IFNb-1a Dose-C omparison Study. Methods: Patients who completed 36 months of treatment (Part 1) of the European IFNb-1a Dose-C omparison Study were given the option to continue double-blind treatment with IFNb-1a 30 mcg or 60 mcg IM once weekly (Part 2). Analyses of 48-month data were performed on sustained disability progression, relapses, and neutralizing antibody (NA b) formation. Results: O f 608/802 subjects who completed 36 months of treatment, 493 subjects continued treatment and 446 completed 48 months of treatment and follow-up. IFNb-1a 30 mcg and 60 mcg IM once weekly were equally effective for up to 48 months. There were no significant differences between doses over 48 months on any of the clinical endpoints, including rate of disability progression, cumulative percentage of patients who progressed (48 and 43, respectively), and annual relapse rates; relapses tended to decrease over 48 months. The incidence of patients who were positive for NAbs at any time during the study was low in both treatment groups. Conclusion: C ompared with 60-mcg IM IFNb-1a once weekly, a dose of 30 mcg IM IFNb-1a once weekly maintains the same clinical efficacy over four years
- …