211 research outputs found
The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation
The binding of Aβ42 peptide monomers to sphingomyelin/cholesterol (1:1 mol ratio) bilayers containing 5 mol% gangliosides (either GM1, or GT1b, or a mixture of brain gangliosides) has been assayed by density gradient ultracentrifugation. This procedure provides a direct method for measuring vesicle-bound peptides after non-bound fraction separation. This centrifugation technique has rarely been used in this context previously. The results show that gangliosides increase by about two-fold the amount of Aβ42 bound to sphingomyelin/cholesterol vesicles. Complementary studies of the same systems using thioflavin T fluorescence, Langmuir monolayers or infrared spectroscopy confirm the ganglioside-dependent increased binding. Furthermore these studies reveal that gangliosides facilitate the aggregation of Aβ42 giving rise to more extended β-sheets. Thus, gangliosides have both a quantitative and a qualitative effect on the binding of Aβ42 to sphingomyelin/cholesterol bilayers.This work was supported in part by grants from the Spanish Ministry of Economy (grant FEDER MINECO PGC2018-099857-B-I00) and the Basque Government (grants No. IT1264-19 and IT1270-19)
Interleukin-10 polymorphisms in Spanish IgA deficiency patients: a case-control and family study
BACKGROUND: IgA deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. Genetic and environmental factors are suspected to be involved in the development of the disease. Interleukin-10 (IL-10) is a cytokine with stimulatory activity on immunoglobulin production and it may be an important regulator in IgAD pathogenesis. The IL-10 gene contains several single nucleotide polymorphisms (SNPs) and two polymorphic microsatellites located in the 5'-flanking region. Our aim was to ascertain if any of these polymorphic markers are associated or linked to IgAD in Spanish patients. METHODS: We genotyped 278 patients with IgAD and 573 ethnically matched controls for the microsatellites IL-10R and IL-10G and for three single nucleotide polymorphisms at positions -1082, -819 and -592 in the proximal promoter of the gene. We also included in this study the parents of 194 patients in order to study the IL-10 haplotypes transmitted and not transmitted to the affected offspring. RESULTS: The only allele where a significant difference was observed in the comparison between IgA deficiency patients and controls was the IL-10G12 allele (OR = 1.58 and p = 0.021). However, this p value could not withstand a Bonferroni correction. None of the IL-10R or promoter SNP alleles was found at a different frequency when patients were compared with controls. CONCLUSION: Our data do not show any significant difference in IL-10 polymorphism frequencies between control and IgAD patient samples. Their haplotype distribution among patients and controls was also equivalent and therefore these microsatellites and SNPs do not seem to influence IgAD susceptibility
Influence of the LILRA3 Deletion on Multiple Sclerosis Risk : Original Data and Meta-Analysis
Altres ajuts: Junta de Andalucía (JA)- Fondos Europeos de Desarrollo Regional (FEDER) (grant number CTS2704 to FM).Multiple sclerosis (MS) is a neurodegenerative, autoimmune disease of the central nervous system. Genome-wide association studies (GWAS) have identified over hundred polymorphisms with modest individual effects in MS susceptibility and they have confirmed the main individual effect of the Major Histocompatibility Complex. Additional risk loci with immunologically relevant genes were found significantly overrepresented. Nonetheless, it is accepted that most of the genetic architecture underlying susceptibility to the disease remains to be defined. Candidate association studies of the leukocyte immunoglobulin-like receptor LILRA3 gene in MS have been repeatedly reported with inconsistent results. In an attempt to shed some light on these controversial findings, a combined analysis was performed including the previously published datasets and three newly genotyped cohorts. Both wild-type and deleted LILRA3 alleles were discriminated in a single-tube PCR amplification and the resulting products were visualized by their different electrophoretic mobilities. Overall, this meta-analysis involved 3200 MS patients and 3069 matched healthy controls and it did not evidence significant association of the LILRA3 deletion [carriers of LILRA3 deletion: p = 0.25, OR (95% CI) = 1.07 (0.95-1.19)], even after stratification by gender and the HLA-DRB1*15 : 01 risk allele
Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population
<p>Abstract</p> <p>Background</p> <p>The protein tyrosine phosphatase N22 gene (<it>PTPN22</it>) encodes a lymphoid-specific phosphatase (LYP) which is an important downregulator of T cell activation. A <it>PTPN22 </it>polymorphism, C1858T, was found associated with type 1 diabetes (T1D) in different Caucasian populations. In this study, we aimed at confirming the role of this variant in T1D predisposition in the Spanish population.</p> <p>Methods</p> <p>A case-control was performed with 316 Spanish white T1D patients consecutively recruited and 554 healthy controls, all of them from the Madrid area. The <it>PTPN22 </it>C1858T SNP was genotyped in both patients and controls using a TaqMan Assay in a 7900 HT Fast Real-Time PCR System.</p> <p>Results</p> <p>We replicated for the first time in a Spanish population the association of the 1858T allele with an increased risk for developing T1D [carriers of allele T vs. CC: OR (95%) = 1.73 (1.17–2.54); p = 0.004]. Furthermore, this allele showed a significant association in female patients with diabetes onset before age 16 years [carriers of allele T vs. CC: OR (95%) = 2.95 (1.45–6.01), female patients vs female controls p = 0.0009]. No other association in specific subgroups stratified for gender, HLA susceptibility or age at onset were observed.</p> <p>Conclusion</p> <p>Our results provide evidence that the <it>PTPN22 </it>1858T allele is a T1D susceptibility factor also in the Spanish population and it might play a different role in susceptibility to T1D according to gender in early-onset T1D patients.</p
A functional PTPN22 polymorphism associated with several autoimmune diseases is not associated with IgA deficiency in the Spanish population
BACKGROUND: The 1858C/T SNP of the PTPN22 gene has been associated with many autoimmune diseases, suggesting the existence of an inflammatory process common to all of them. We studied the association of that polymorphism with immunoglobulin A deficiency (IgAD) following a double approach: a case-control and a TDT study. METHODS: A total of 259 IgAD patients and 455 unrelated matched controls, and 128 families were used for each approach. Comparisons were performed using Chi-Square tests or Fisher's exact test when necessary. RESULTS: No association between the PTPN22 1858C/T SNP and IgA deficiency was found in any case (allelic frequencies 8% vs. 6% in patients and controls, respectively, OR= 1.14 (0.72–1.79), p= 0.56; TDT p = 0.08). CONCLUSION: The result obtained seems to reinforce the consideration of IgA deficiency as a primary immunodeficiency rather than an autoimmune disease
The Use of Radiofrequency Energy in Pediatric Cardiology
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73038/1/j.1540-8183.1995.tb00583.x.pd
Differential association of two PTPN22 coding variants with Crohn’s disease and ulcerative colitis
2 páginas.-- Póster presentado al 5º European Workshop on Immune-Mediated Inflammatory Diseases celebrado en Sitges (Barcelona) dxel 1 al 3 de Diciembre de 2010.-- et al.The PTPN22 gene is an important risk factor for human
autoimmunity. Two PTPN22 missense-SNPs, both with
functional influence, the R620W (1858C>T, rs2476601) in
exon 14 and the R263Q (788G>A, rs33996649) in exon 10
have been associated with autoimmune diseases [1-4].Peer reviewe
Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of
total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance
among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent
years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this
flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic
N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here
hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and
amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a
case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on
average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an
arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592.
Additional support was provided by Arctic Long Term Ecological Research program, funded by
National Science Foundation, Division of Environmental Biology
- …