2,406 research outputs found

    Quantum Mechanically Induced Wess-Zumino Term in the Principal Chiral Model

    Get PDF
    It is argued that, in the two dimensional principal chiral model, the Wess-Zumino term can be induced quantum mechanically, allowing the model with the critical value of the coupling constant λ2=8π/∣k∣\lambda^2 = 8\pi/|k| to turn into the Wess-Zumino-Novikov-Witten model at the quantum level. The Wess-Zumino term emerges from the inequivalent quantizations possible on a sphere hidden in the configuration space of the original model. It is shown that the Dirac monopole potential, which is induced on the sphere in the inequivalent quantizations, turns out to be the Wess-Zumino term in the entire configuration space.Comment: 9 pages, Te

    Classical Aspects of Quantum Walls in One Dimension

    Get PDF
    We investigate the system of a particle moving on a half line x >= 0 under the general walls at x = 0 that are permitted quantum mechanically. These quantum walls, characterized by a parameter L, are shown to be realized as a limit of regularized potentials. We then study the classical aspects of the quantum walls, by seeking a classical counterpart which admits the same time delay in scattering with the quantum wall, and also by examining the WKB-exactness of the transition kernel based on the regularized potentials. It is shown that no classical counterpart exists for walls with L < 0, and that the WKB-exactness can hold only for L = 0 and L = infinity.Comment: TeX, 21 pages, 4 figures. v2: some parts of the text improved, new and improved figure

    Spin-current absorption by inhomogeneous spin-orbit coupling

    Full text link
    We investigate the spin-current absorption induced by an inhomogeneous spin-orbit coupling due to impurities in metals. We consider the system with spin currents driven by the electric field or the spin accumulation. The resulting diffusive spin currents, including the gradient of the spin-orbit coupling strength, indicate the spin-current absorption at the interface, which is exemplified with experimentally relevant setups.Comment: 13 pages, 5 figure

    Kaon semileptonic decay (K_{l3}) form factors from the instanton vacuum

    Get PDF
    We investigate the kaon semileptonic decay (K_{l3}) form factors within the framework of the nonlocal chiral quark model from the instanton vacuum, taking into account the effects of flavor SU(3) symmetry breaking. We also consider the problem of gauge invariance arising from the momentum-dependent quark mass in the present work. All theoretical calculations are carried out without any adjustable parameter, the average instanton size (rho ~ 1/3 fm) and the inter-instanton distance (R ~ 1 fm) having been fixed. We also show that the present results satisfy the Callan-Treiman low-energy theorem as well as the Ademollo-Gatto theorem. Using the K_{l3} form factors, we evaluate relevant physical quantities. It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon semileptonic form factors. The present results are in a good agreement with experiments, and are compatible with other model calculations.Comment: 12 pages, 3 figures, submitted to PR

    Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma

    Get PDF
    We examine the electron acceleration by a localized electrostatic potential oscillating at high frequencies by means of particle‐in‐cell (PIC) simulations, in which we apply oscillating electric fields to two neighboring simulation cells. We derive an analytic model for the direct electron heating by the externally driven antenna electric field, and we confirm that it approximates well the electron heating obtained in the simulations. In the simulations, transient waves accelerate electrons in a sheath surrounding the antenna. This increases the Larmor radii of the electrons close to the antenna, and more electrons can reach the antenna location to interact with the externally driven fields. The resulting hot electron sheath is dense enough to support strong waves that produce high‐energy sounder‐accelerated electrons (SAEs) by their nonlinear interaction with the ambient electrons. By increasing the emission amplitudes in our simulations to values that are representative for the ones of the sounder on board the OEDIPUS C (OC) satellites, we obtain electron acceleration into the energy range which is comparable to the 20 keV energies of the SAE observed by the OC mission. The emission also triggers stable electrostatic waves oscillating at frequencies close to the first harmonic of the electron cyclotron frequency. We find this to be an encouraging first step of examining SAE generation with kinetic numerical simulation codes

    Spin-torque efficiency enhanced by Rashba spin splitting in three dimensions

    Full text link
    We examine a spin torque induced by the Rashba spin-orbit coupling in three dimensions within the Boltzmann transport theory. We analytically calculate the spin torque and show how its behavior is related with the spin topology in the Fermi surfaces by studying the Fermi-energy dependence of the spin torque. Moreover we discuss the spin-torque efficiency which is the spin torque divided by the applied electric current in association with the current-induced magnetization reversal. It is found that high spin-torque efficiency is achieved when the Fermi energy lies on only the lower band and there exists an optimal value for the Rashba parameter, where the spin-torque efficiency becomes maximum.Comment: 7 pages, 5 figure
    • 

    corecore