3,692 research outputs found
QCD Approach to B->D \pi Decays and CP Violation
The branching ratios and CP violations of the decays, including
both the color-allowed and the color-suppressed modes, are investigated in
detail within QCD framework by considering all diagrams which lead to three
effective currents of two quarks. An intrinsic mass scale as a dynamical gluon
mass is introduced to treat the infrared divergence caused by the soft
collinear approximation in the endpoint regions, and the Cutkosky rule is
adopted to deal with a physical-region singularity of the on mass-shell quark
propagators. When the dynamical gluon mass is regarded as a universal
scale, it is extracted to be around MeV from one of the
well-measured decay modes. The resulting predictions for all
branching ratios are in agreement with the current experimental measurements.
As these decays have no penguin contributions, there are no direct
asymmetries. Due to interference between the Cabibbo-suppressed and the
Cabibbo-favored amplitudes, mixing-induced CP violations are predicted in the
decays to be consistent with the experimental data at
1- level. More precise measurements will be helpful to extract weak
angle .Comment: 21pages,5 figures,3 tables, typos corrected and numerical result for
one of decay channels is improve
Neutrino Mass Limit from Galaxy Cluster Number Density Evolution
Measurements of the evolution with redshift of the number density of massive
galaxy clusters are used to constrain the energy density of massive neutrinos
and so the sum of neutrino masses . We consider a spatially-flat
cosmological model with cosmological constant, cold dark matter, baryonic
matter, and massive neutrinos. Accounting for the uncertainties in the
measurements of the relevant cosmological parameters we obtain a limit of 2.4 eV (95 % C.L.).Comment: 6 pages, 2 figures and references added, accepted for publication in
Phys. Rev.
Search for a Scalar Bottom Quark with Mass 3.5-4.5 GeV/
We report on a search for a supersymmetric meson with mass
between 3.5 and 4.5 GeV/ using 4.52 of integrated
luminosity produced at GeV, just below the threshold, and collected with the CLEO detector. We find no evidence
for a light scalar bottom quark.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied
the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+
nu_e. By performing a four-dimensional maximum likelihood fit, we determine the
form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole
mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay
asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat)
+/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular
distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for
CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/
(alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst)
+/- 0.02, where the third error is from the uncertainty in the world average of
the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through
http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR
First Observation of barB0 to D*0 pi+pi+pi-pi- Decays
We report on the observation of B0bar -> D*0 pi+ pi+ pi- pi- decays. The
branching ratio is (0.30 +/- 0.07 +/- 0.06)%. Interest in this particular mode
was sparked by Ligeti, Luke and Wise who propose it as a way to check the
validity of factorization tests in B0bar -> D*+ pi+ pi- pi- pi0 decays.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, Version to appear in Phys. Rev.
Branching Fractions of tau Leptons to Three Charged Hadrons
From electron-positron collision data collected with the CLEO detector
operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the
branching fractions for tau decays into three explicitly identified hadrons and
a neutrino are presented as {\cal
B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to
K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to
K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to
K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are
statistical and systematic, respectively.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let
Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State
Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II
detector we have observed a narrow resonance in the Ds*+pi0 final state, with a
mass near 2.46 GeV. The search for such a state was motivated by the recent
discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the
DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final
states in CLEO data, we observe peaks in both of the corresponding
reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and
dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret
these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new
state, designated as the DsJ(2463)+. Because of the similar dM values, each of
these states represents a source of background for the other if photons are
lost, ignored or added. A quantitative accounting of these reflections confirms
that both states exist. We have measured the mean mass differences
= 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and
= 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+
state. We have also searched, but find no evidence, for decays of the two
states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of
the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels
respectively, are consistent with their interpretations as (c anti-strange)
mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical
Review D; minor modifications and fixes to typographical errors, plus an
added section on production properties. The main results are unchanged; they
supersede those reported in hep-ex/030501
Study of Charmless Hadronic B Meson Decays to Pseudoscalar-Vector Final States
We report results of searches for charmless hadronic B meson decays to
pseudoscalar(pi^+-,K^+-,Pi^0 or Ks^0)-vector(Rho, K* or Omega) final states.
Using 9.7 million BBbar pairs collected with the CLEO detector, we report first
observation of B^- --> Pi^-Rho^0, B^0 --> Pi^+-Rho^-+ and B^- --> Pi^-Omega,
which are expected to be dominated by hadronic b --> u transitions. The
measured branching fractions are (10.4+3.3-3.4+-2.1)x10^-6,
(27.6+8.4-7.4+-4.2)x10^-6 and (11.3+3.3-2.9+-1.4)x10^-6, respectively.
Branching fraction upper limits are set for all the other decay modes
investigated.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Observation of New States Decaying into
Using 13.7 fb^{-1} of data recorded by the CLEO detector at CESR, we
investigate the spectrum of charmed baryons which decay into Lambda_c^+ pi^-
pi^+ and are more massive than the Lambda_{c1} baryons. We find evidence for
two new states: one is broad and has an invariant mass roughly 480 MeV above
that of the Lambda_c^+; the other is narrow with an invariant mass of 596 +- 1
+- 2 MeV above the Lambda_c^+ mass. These results are preliminary.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
- …