3,692 research outputs found

    QCD Approach to B->D \pi Decays and CP Violation

    Full text link
    The branching ratios and CP violations of the B→DπB\to D\pi decays, including both the color-allowed and the color-suppressed modes, are investigated in detail within QCD framework by considering all diagrams which lead to three effective currents of two quarks. An intrinsic mass scale as a dynamical gluon mass is introduced to treat the infrared divergence caused by the soft collinear approximation in the endpoint regions, and the Cutkosky rule is adopted to deal with a physical-region singularity of the on mass-shell quark propagators. When the dynamical gluon mass μg\mu_g is regarded as a universal scale, it is extracted to be around μg=440\mu_g = 440 MeV from one of the well-measured B→DπB\to D\pi decay modes. The resulting predictions for all branching ratios are in agreement with the current experimental measurements. As these decays have no penguin contributions, there are no direct CPCP asymmetries. Due to interference between the Cabibbo-suppressed and the Cabibbo-favored amplitudes, mixing-induced CP violations are predicted in the B→D±π∓B\to D^{\pm}\pi^{\mp} decays to be consistent with the experimental data at 1-σ\sigma level. More precise measurements will be helpful to extract weak angle 2β+γ2\beta+\gamma.Comment: 21pages,5 figures,3 tables, typos corrected and numerical result for one of decay channels is improve

    Neutrino Mass Limit from Galaxy Cluster Number Density Evolution

    Full text link
    Measurements of the evolution with redshift of the number density of massive galaxy clusters are used to constrain the energy density of massive neutrinos and so the sum of neutrino masses ∑mν\sum m_\nu. We consider a spatially-flat cosmological model with cosmological constant, cold dark matter, baryonic matter, and massive neutrinos. Accounting for the uncertainties in the measurements of the relevant cosmological parameters we obtain a limit of ∑mν\sum m_\nu << 2.4 eV (95 % C.L.).Comment: 6 pages, 2 figures and references added, accepted for publication in Phys. Rev.

    Search for a Scalar Bottom Quark with Mass 3.5-4.5 GeV/c2c^{2}

    Full text link
    We report on a search for a supersymmetric B~\tilde{B} meson with mass between 3.5 and 4.5 GeV/c2c^2 using 4.52 fb−1{\rm fb}^{-1} of integrated luminosity produced at s=10.52\sqrt{s}=10.52 GeV, just below the e+e−→BBˉe^+e^-\to B\bar{B} threshold, and collected with the CLEO detector. We find no evidence for a light scalar bottom quark.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e

    Full text link
    Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+ nu_e. By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat) +/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/ (alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR

    First Observation of barB0 to D*0 pi+pi+pi-pi- Decays

    Full text link
    We report on the observation of B0bar -> D*0 pi+ pi+ pi- pi- decays. The branching ratio is (0.30 +/- 0.07 +/- 0.06)%. Interest in this particular mode was sparked by Ligeti, Luke and Wise who propose it as a way to check the validity of factorization tests in B0bar -> D*+ pi+ pi- pi- pi0 decays.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, Version to appear in Phys. Rev.

    Branching Fractions of tau Leptons to Three Charged Hadrons

    Full text link
    From electron-positron collision data collected with the CLEO detector operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the branching fractions for tau decays into three explicitly identified hadrons and a neutrino are presented as {\cal B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are statistical and systematic, respectively.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let

    Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State

    Full text link
    Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II detector we have observed a narrow resonance in the Ds*+pi0 final state, with a mass near 2.46 GeV. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new state, designated as the DsJ(2463)+. Because of the similar dM values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences = 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and = 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+ state. We have also searched, but find no evidence, for decays of the two states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels respectively, are consistent with their interpretations as (c anti-strange) mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical Review D; minor modifications and fixes to typographical errors, plus an added section on production properties. The main results are unchanged; they supersede those reported in hep-ex/030501

    Study of Charmless Hadronic B Meson Decays to Pseudoscalar-Vector Final States

    Full text link
    We report results of searches for charmless hadronic B meson decays to pseudoscalar(pi^+-,K^+-,Pi^0 or Ks^0)-vector(Rho, K* or Omega) final states. Using 9.7 million BBbar pairs collected with the CLEO detector, we report first observation of B^- --> Pi^-Rho^0, B^0 --> Pi^+-Rho^-+ and B^- --> Pi^-Omega, which are expected to be dominated by hadronic b --> u transitions. The measured branching fractions are (10.4+3.3-3.4+-2.1)x10^-6, (27.6+8.4-7.4+-4.2)x10^-6 and (11.3+3.3-2.9+-1.4)x10^-6, respectively. Branching fraction upper limits are set for all the other decay modes investigated.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Observation of New States Decaying into Λc+π−π+\Lambda_{c}^{+}\pi^{-}\pi^{+}

    Full text link
    Using 13.7 fb^{-1} of data recorded by the CLEO detector at CESR, we investigate the spectrum of charmed baryons which decay into Lambda_c^+ pi^- pi^+ and are more massive than the Lambda_{c1} baryons. We find evidence for two new states: one is broad and has an invariant mass roughly 480 MeV above that of the Lambda_c^+; the other is narrow with an invariant mass of 596 +- 1 +- 2 MeV above the Lambda_c^+ mass. These results are preliminary.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    • …
    corecore