136 research outputs found

    Submillimeter vibrationally excited water emission from the peculiar red supergiant VY CMa

    Get PDF
    Vibrationally excited emission from the SiO and H2O molecules probes the innermost circumstellar envelopes of oxygen-rich red giant and supergiant stars. VY CMa is the most prolific known stellar emission source in these molecules. Observations were made to search for rotational lines in the lowest vibrationally excited state of H2O. The APEX telescope was used for observations of H2O lines at frequencies around 300 GHz. Two vibrationally excited H2O lines were detected, a third one could not be found. In one of the lines we find evidence for weak maser action, similar to known (sub)millimeter H2O lines. We find that the other line's intensity is consistent with thermal excitation by the circumstellar infrared radiation field. Several SiO lines were detected together with the H2O lines.Comment: APEX A&A special issue, accepte

    The ISO LWS high resolution spectral survey towards Sagittarius B2

    Get PDF
    A full spectral survey was carried out towards the Giant Molecular Cloud complex, Sagittarius B2 (Sgr B2), using the ISO Long Wavelength Spectrometer Fabry-Perot mode. This provided complete wavelength coverage in the range 47-196 um (6.38-1.53 THz) with a spectral resolution of 30-40 km/s. This is an unique dataset covering wavelengths inaccessible from the ground. It is an extremely important region of the spectrum as it contains both the peak of the thermal emission from dust, and crucial spectral lines of key atomic (OI, CII, OIII, NII and NIII) and molecular species (NH3, NH2, NH, H2O, OH, H3O+, CH, CH2, C3, HF and H2D+). In total, 95 spectral lines have been identified and 11 features with absorption depth greater than 3 sigma remain unassigned. Most of the molecular lines are seen in absorption against the strong continuum, whereas the atomic and ionic lines appear in emission (except for absorption in the OI 63 um and CII 158 um lines). Sgr B2 is located close to the Galactic Centre and so many of the features also show a broad absorption profile due to material located along the line of sight. A full description of the survey dataset is given with an overview of each detected species and final line lists for both assigned and unassigned features.Comment: Accepted for publication in MNRA

    Oxygen isotopic ratios in galactic clouds along the line of sight towards Sagittarius B2

    Full text link
    As an independent check on previous measurements of the isotopic abundance of oxygen through the Galaxy, we present a detailed analysis of the ground state rotational lines of 16OH and 18OH in absorption towards the giant molecular cloud complex, Sagittarius B2. We have modelled the line shapes to separate the contribution of several galactic clouds along the line of sight and calculate 16OH/18OH ratios for each of these features. The best fitting values are in the range 320-540, consistent with the previous measurements in the Galactic Disk but slightly higher than the standard ratio in the Galactic Centre. They do not show clear evidence for a gradient in the isotopic ratio with galactocentric distance. The individual 16OH column densities relative to water give ratios of [H2O/OH]=0.6-1.2, similar in magnitude to galactic clouds in the sight lines towards W51 and W49. A comparison with CH indicates [OH/CH] ratios higher than has been previously observed in diffuse clouds. We estimate OH abundances of 10^-7 - 10^-6 in the line of sight features.Comment: 10 pages, 6 figures, accepted for publication in A&

    Herschel observations of the Sgr B2 cores: Hydrides, warm CO, and cold dust

    Full text link
    Sagittarius B2 (Sgr B2) is one of the most massive and luminous star-forming regions in the Galaxy and shows chemical and physical conditions similar to those in distant extragalactic starbursts. We present large-scale far-IR/submm photometric images and spectroscopic maps taken with the PACS and SPIRE instruments onboard Herschel. The spectra towards the Sgr B2 star-forming cores, B2(M) and B2(N), are characterized by strong CO line emission, emission lines from high-density tracers (HCN, HCO+, and H2S), [N II] 205 um emission from ionized gas, and absorption lines from hydride molecules (OH+, H2O+, H2O, CH+, CH, SH+, HF, NH, NH2, and NH3). The rotational population diagrams of CO suggest the presence of two gas temperature components: an extended warm component, which is associated with the extended envelope, and a hotter component, which is seen towards the B2(M) and B2(N) cores. As observed in other Galactic Center clouds, the gas temperatures are significantly higher than the dust temperatures inferred from photometric images. We determined far-IR and total dust masses in the cores. Non-local thermodynamic equilibrium models of the CO excitation were used to constrain the averaged gas density in the cores. A uniform luminosity ratio is measured along the extended envelope, suggesting that the same mechanism dominates the heating of the molecular gas at large scales. The detection of high-density molecular tracers and of strong [N II] 205 um line emission towards the cores suggests that their morphology must be clumpy to allow UV radiation to escape from the inner HII regions. Together with shocks, the strong UV radiation field is likely responsible for the heating of the hot CO component. At larger scales, photodissociation regions models can explain both the observed CO line ratios and the uniform L(CO)/LFIR luminosity ratios

    Herschel-SPIRE-Fourier Transform Spectroscopy of the nearby spiral galaxy IC342

    Full text link
    We present observations of the nearby spiral galaxy IC342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer. The spectral range afforded by SPIRE, 196-671 microns, allows us to access a number of 12CO lines from J=4--3 to J=13--12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [CI] and [NII]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3x10^{17} cm^{-2} and 0.4x10^{17} cm^{-2} and CO gas masses of 1.26x10^{7} Msolar and 0.15x10^{7} Msolar, for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations, indicate the existence of a much warmer gas component (~400 K) confirming earlier findings from H_{2} rotational line analysis from ISO and Spitzer. The mass of the warm gas is 10% of the cold gas, but it likely dominates the CO luminosity. In addition, we detect strong emission from [NII] 205microns and the {3}P_{1}->{3}P_{0} and {3}P_{2} ->{3}P_{1} [CI] lines at 370 and 608 microns, respectively. The measured 12CO line ratios can be explained by Photon-dominated region (PDR) models although additional heating by e.g. cosmic rays cannot be excluded. The measured [CI] line ratio together with the derived [C] column density of 2.1x10^{17} cm^{-2} and the fact that [CI] is weaker than CO emission in IC342 suggests that [CI] likely arises in a thin layer on the outside of the CO emitting molecular clouds consistent with PDRs playing an important role.Comment: 9 pages, 8 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS

    Calibration of <i>Herschel</i> SPIRE FTS observations at different spectral resolutions

    Get PDF
    The SPIRE Fourier Transform Spectrometer on-board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing demonstrates that the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions using housekeeping data from the instrument subsystems, the calibration cannot be corrected analytically. Therefore, an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions

    Herschel spectral-mapping of the Helix Nebula (NGC 7293): Extended CO photodissociation and OH+ emission

    Full text link
    The Helix Nebula (NGC 7293) is the closest planetary nebulae. Therefore, it is an ideal template for photochemical studies at small spatial scales in planetary nebulae. We aim to study the spatial distribution of the atomic and the molecular gas, and the structure of the photodissociation region along the western rims of the Helix Nebula as seen in the submillimeter range with Herschel. We use 5 SPIRE FTS pointing observations to make atomic and molecular spectral maps. We analyze the molecular gas by modeling the CO rotational lines using a non-local thermodynamic equilibrium (non-LTE) radiative transfer model. For the first time, we have detected extended OH+ emission in a planetary nebula. The spectra towards the Helix Nebula also show CO emission lines (from J= 4 to 8), [NII] at 1461 GHz from ionized gas, and [CI] (2-1), which together with the OH+ lines, trace extended CO photodissociation regions along the rims. The estimated OH+ column density is (1-10)x1e12 cm-2. The CH+ (1-0) line was not detected at the sensitivity of our observations. Non-LTE models of the CO excitation were used to constrain the average gas density (n(H2)=(1-5)x1e5 cm-3) and the gas temperature (Tk= 20-40 K). The SPIRE spectral-maps suggest that CO arises from dense and shielded clumps in the western rims of the Helix Nebula whereas OH+ and [CI] lines trace the diffuse gas and the UV and X-ray illuminated clumps surface where molecules reform after CO photodissociation. [NII] traces a more diffuse ionized gas component in the interclump medium.Comment: Accepted for publication in Astronomy and Astrophysic

    Systematic characterisation of the Herschel SPIRE Fourier Transform Spectrometer

    Get PDF
    A systematic programme of calibration observations was carried out to monitor the performance of the SPIRE FTS instrument on board the Herschel Space Observatory. Observations of planets (including the prime point-source calibrator, Uranus), asteroids, line sources, dark sky, and cross-calibration sources were made in order to monitor repeatability and sensitivity, and to improve FTS calibration. We present a complete analysis of the full set of calibration observations and use them to assess the performance of the FTS. Particular care is taken to understand and separate out the effect of pointing uncertainties, including the position of the internal beam steering mirror for sparse observations in the early part of the mission. The repeatability of spectral line centre positions is <5km/s, for lines with signal-to-noise ratios >40, corresponding to <0.5-2.0% of a resolution element. For spectral line flux, the repeatability is better than 6%, which improves to 1-2% for spectra corrected for pointing offsets. The continuum repeatability is 4.4% for the SLW band and 13.6% for the SSW band, which reduces to ~1% once the data have been corrected for pointing offsets. Observations of dark sky were used to assess the sensitivity and the systematic offset in the continuum, both of which were found to be consistent across the FTS detector arrays. The average point-source calibrated sensitivity for the centre detectors is 0.20 and 0.21 Jy [1 sigma; 1 hour], for SLW and SSW. The average continuum offset is 0.40 Jy for the SLW band and 0.28 Jy for the SSW band.Comment: 41 pages, 37 figures, 32 tables. Accepted for publication in MNRA
    corecore