3 research outputs found

    Platelet Carbonic Anhydrase II, a Forgotten Enzyme, May Be Responsible for Aspirin Resistance

    Get PDF
    Background. Thromboembolic events constitute a major health problem, despite the steadily expanding arsenal of antiplatelet drugs. Hence, there is still a need to optimize the antiplatelet therapy. Objectives. The aim of our study was to verify a hypothesis that there are no differences in platelet proteome between two groups of healthy people representing different acetylsalicylic acid (aspirin) responses as assessed by the liquid chromatography/mass spectrometry (LC/MS) technique. Patients/Methods. A total of 61 healthy volunteers were recruited for the study. Physical examination and blood collection were followed by platelet-rich plasma aggregation assays and platelet separation for proteomic LC/MS analysis. Arachidonic acid- (AA-) induced aggregation (in the presence of aspirin) allowed to divide study participants into two groups aspirin-resistant (AR) and aspirin-sensitive (AS) ones. Subsequently, platelet proteome was compared in groups using the LC/MS analysis. Results. The LC/MS analysis of platelet proteome between groups revealed that out of all identified proteins, the only discriminatory protein, affecting aspirin responsiveness, is platelet carbonic anhydrase II (CA II). Conclusions. CA II is a platelet function modulator and should be taken into consideration as a cardiovascular event risk factor or therapeutic target

    Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    No full text
    Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes
    corecore