228 research outputs found

    Transport of the repulsive Bose-Einstein condensate in a double-well trap: interaction impact and relation to Josephson effect

    Full text link
    Two aspects of the transport of the repulsive Bose-Einstein condensate (BEC) in a double-well trap are inspected: impact of the interatomic interaction and analogy to the Josephson effect. The analysis employs a numerical solution of 3D time-dependent Gross-Pitaevskii equation for a total order parameter covering all the trap. The population transfer is driven by a time-dependent shift of a barrier separating the left and right wells. Sharp and soft profiles of the barrier velocity are tested. Evolution of the relevant characteristics, involving phase differences and currents, is inspected. It is shown that the repulsive interaction substantially supports the transfer making it possible i) in a wide velocity interval and ii) three orders of magnitude faster than in the ideal BEC. The transport can be approximately treated as the d.c. Josephson effect. A dual origin of the critical barrier velocity (break of adiabatic following and d.c.-a.c. transition) is discussed. Following the calculations, robustness of the transport (d.c.) crucially depends on the interaction and barrier velocity profile. Only soft profiles which minimize undesirable dipole oscillations are acceptable.Comment: 10 pages, 8 figures, accepted by Laser Physis. arXiv admin note: text overlap with arXiv:1312.2750 The replaced version has a few corrections and additional reference

    Dynamics of cluster deposition on Ar surface

    Full text link
    Using a combined quantum mechanical/classical method, we study the dynamics of deposition of small Na clusters on Ar(001) surface. We work out basic mechanisms by systematic variation of substrate activity, impact energy, cluster orientations, cluster sizes, and charges. The soft Ar material is found to serve as an extremely efficient shock absorber which provides cluster capture in a broad range of impact energies. Reflection is only observed in combination with destruction of the substrate. The kinetic energy of the impinging cluster is rapidly transfered at first impact. The distribution of the collision energy over the substrate proceeds very fast with velocity of sound. The full thermalization of ionic and atomic energies goes at a much slower pace with times of several ps. Charged clusters are found to have a much stronger interface interaction and thus get in significantly closer contact with the surface.Comment: 10 pages, 6 figures, accepted in Euro. Phys. J.
    • …
    corecore