460 research outputs found
Quantitative measurement of the surface charge density
We present a method of measuring the charge density on dielectric surfaces.
Similar to electrostatic force microscopy we record the electrostatic
interaction between the probe and the sample surface, but at large tip-sample
distances. For calibration we use a pyroelectric sample which allows us to
alter the surface charge density by a known amount via a controlled temperature
change. For proof of principle we determined the surface charge density under
ambient conditions of ferroelectric lithium niobate
Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy
The contrast mechanism for ferroelectric domain imaging via piezoresponse
force microscopy (PFM) is investigated. A novel analysis of PFM measurements is
presented which takes into account the background caused by the experimental
setup. This allows, for the first time, a quantitative, frequency independent
analysis of the domain contrast which is in good agreement with the expected
values for the piezoelectric deformation of the sample and satisfies the
generally required features of PFM imaging
Crosstalk Correction in Atomic Force Microscopy
Commercial atomic force microscopes usually use a four-segmented photodiode
to detect the motion of the cantilever via laser beam deflection. This read-out
technique enables to measure bending and torsion of the cantilever separately.
A slight angle between the orientation of the photodiode and the plane of the
readout beam, however, causes false signals in both readout channels, so-called
crosstalk, that may lead to misinterpretation of the acquired data. We
demonstrate this fault with images recorded in contact mode on ferroelectric
crystals and present an electronic circuit to compensate for it, thereby
enabling crosstalk-free imaging
Impact of Electrostatic Forces in Contact Mode Scanning Force Microscopy
In this contribution we address the question to what extent surface
charges affect contact-mode scanning force microscopy measurements. % We
therefore designed samples where we could generate localized electric field
distributions near the surface as and when required. % We performed a series of
experiments where we varied the load of the tip, the stiffness of the
cantilever and the hardness of the sample surface. % It turned out that only
for soft cantilevers could an electrostatic interaction between tip and surface
charges be detected, irrespective of the surface properties, i.\,e. basically
regardless its hardness. % We explain these results through a model based on
the alteration of the tip-sample potential by the additional electric field
between charged tip and surface charges
Sol-Gel Derived Ferroelectric Nanoparticles Investigated by Piezoresponse Force Microscopy
Piezoresponse force microscopy (PFM) was used to investigate the
ferroelectric properties of sol-gel derived LiNbO nanoparticles. To
determine the degree of ferroelectricity we took large-area images and
performed statistical image-analysis. The ferroelectric behavior of single
nanoparticles was verified by poling experiments using the PFM tip. Finally we
carried out simultaneous measurements of the in-plane and the out-of-plane
piezoresponse of the nanoparticles, followed by measurements of the same area
after rotation of the sample by 90 and 180. Such
measurements basically allow to determine the direction of polarization of
every single particle
Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy
As a consequence of elasticity, mechanical deformations of crystals occur on
a length scale comparable to their thickness. This is exemplified by applying a
homogeneous electric field to a multi-domain ferroelectric crystal: as one
domain is expanding the adjacent ones are contracting, leading to clamping at
the domain boundaries. The piezomechanically driven surface corrugation of
micron-sized domain patterns in thick crystals using large-area top electrodes
is thus drastically suppressed, barely accessible by means of piezoresponse
force microscopy
Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling
Continuous wave ultraviolet (UV) laser irradiation at lambda=244 nm on the +z face of undoped and MgO doped congruent lithium niobate single crystals has been observed to inhibit ferroelectric domain inversion. The inhibition occurs directly beneath the illuminated regions, in a depth greater than 100 nm during subsequent electric field poling of the crystal. Domain inhibition was confirmed by both differential domain etching and piezoresponse force microscopy. This effect allows the formation of arbitrarily shaped domains in lithium niobate and forms the basis of a high spatial resolution micro-structuring approach when followed by chemical etching
Ultra-smooth lithium niobate micro-resonators by surface tension reshaping
Thermal treatment of micro-structured lithium niobate substrates at temperatures close to, but below the melting point, allows surface tension to reshape a preferentially melted surface zone [1] of the crystal to form ultra-smooth single crystal toroidal or spherical structures. Such structures, an example of which is shown in figure 1, are suitable for the fabrication of photonic micro-resonators with low scattering loss. The thermally treated material maintains its single crystal nature after the thermal treatment because the bulk remains solid throughout the process acting as seed during the recrystallization process which takes place during the cooling stage. The single crystal nature of the reshaped material has been verified by piezoresponse force microscopy, Raman spectroscopy and chemical etching. The inherent properties of lithium niobate crystals (optically nonlinear, piezoelectric and electro-optic) makes the resultant micro-resonator extremely suitable for sensing applications, for the production of micro-lasers (if doped with Er or Nd), for nonlinear frequency generation and finally for switching/modulation and tunable spectral filtering in optical telecommunications. The transformation of the initial surface micro-structures to the resulting resonator structure is a temperature dependent process as the surface tension acts on the surface melted layer of the crystal, Experimental investigation and modelling of the thermal treatment as well as investigation of the performance of these microresonators is underway to establish full control of the fabrication process for practical applications
- …