1,629 research outputs found
Temperature dependence of the ohmic conductivity and activation energy of Pb1+y(Zr0.3Ti0.7)O3 thin films
The ohmic conductivity of the sol-gel derived Pb1+y(Zr0.3Ti0.7)O3 thin films
(with the excess lead y=0.0 to 0.4) are investigated using low frequency small
signal alternate current (AC) and direct current (DC) methods. Its temperature
dependence shows two activation energies of 0.26 and 0.12 eV depending on
temperature range and excess Pb levels. The former is associated with Pb3+
acceptor centers, while the latter could be due to a different defect level yet
to be identified.Comment: 13 pages, 3 figures, PostScript. Submitted to Applied Physics Letter
Quantum cloning with an optical fiber amplifier
It has been shown theoretically that a light amplifier working on the
physical principle of stimulated emission should achieve optimal quantum
cloning of the polarization state of light. We demonstrate close-to-optimal
universal quantum cloning of polarization in a standard fiber amplifier for
telecom wavelengths. For cloning 1 --> 2 we find a fidelity of 0.82, the
optimal value being 5/6 = 0.83.Comment: 4 pages, 3 figure
Recommended from our members
2D Visualization of the Psoriasis Transcriptome Fails to Support the Existence of Dual-Secreting IL-17A/IL-22 Th17 T Cells.
The present paradigm of psoriasis pathogenesis revolves around the IL-23/IL-17A axis. Dual-secreting Th17 T cells presumably are the predominant sources of the psoriasis phenotype-driving cytokines, IL-17A and IL-22. We thus conducted a meta-analysis of independently acquired RNA-seq psoriasis datasets to explore the relationship between the expression of IL17A and IL22. This analysis failed to support the existence of dual secreting IL-17A/IL-22 Th17 cells as a major source of these cytokines. However, variable relationships amongst the expression of psoriasis susceptibility genes and of IL17A, IL22, and IL23A were identified. Additionally, to shed light on gene expression relationships in psoriasis, we applied a machine learning nonlinear dimensionality reduction strategy (t-SNE) to display the entire psoriasis transcriptome as a 2-dimensonal image. This analysis revealed a variety of gene clusters, relevant to psoriasis pathophysiology but failed to support a relationship between IL17A and IL22. These results support existing theories on alternative sources of IL-17A and IL-22 in psoriasis such as a Th22 cells and non-T cell populations
Spontaneous decay dynamics in atomically doped carbon nanotubes
We report a strictly non-exponential spontaneous decay dynamics of an excited
two-level atom placed inside or at different distances outside a carbon
nanotube (CN). This is the result of strong non-Markovian memory effects
arising from the rapid variation of the photonic density of states with
frequency near the CN. The system exhibits vacuum-field Rabi oscillations, a
principal signature of strong atom-vacuum-field coupling, when the atom is
close enough to the nanotube surface and the atomic transition frequency is in
the vicinity of the resonance of the photonic density of states. Caused by
decreasing the atom-field coupling strength, the non-exponential decay dynamics
gives place to the exponential one if the atom moves away from the CN surface.
Thus, atom-field coupling and the character of the spontaneous decay dynamics,
respectively, may be controlled by changing the distance between the atom and
CN surface by means of a proper preparation of atomically doped CNs. This opens
routes for new challenging nanophotonics applications of atomically doped CN
systems as various sources of coherent light emitted by dopant atoms.Comment: 10 pages, 4 figure
Quantum cloning
The impossibility of perfectly copying (or cloning) an arbitrary quantum
state is one of the basic rules governing the physics of quantum systems. The
processes that perform the optimal approximate cloning have been found in many
cases. These "quantum cloning machines" are important tools for studying a wide
variety of tasks, e.g. state estimation and eavesdropping on quantum
cryptography. This paper provides a comprehensive review of quantum cloning
machines (both for discrete-dimensional and for continuous-variable quantum
systems); in addition, it presents the role of cloning in quantum cryptography,
the link between optimal cloning and light amplification via stimulated
emission, and the experimental demonstrations of optimal quantum cloning
Some forgotten features of the Bose Einstein Correlations
Notwithstanding the visible maturity of the subject of Bose-Einstein
Correlations (BEC), as witnessed nowadays, we would like to bring to ones
attention two points, which apparently did not received attention they deserve:
the problem of the choice of the form of correlation function when
effects of partial coherence of the hadronizing source are to be included and
the feasibility to model effects of Bose-Einstein statistics, in particular the
BEC, by direct numerical simulations.Comment: Talk delivered by G.Wilk at the International Workshop {\it
Relativistic Nuclear Physics: from Nuclotron to LHC energies}, Kiev, June
18-22, 2007, Ukraine; misprints correcte
Nonadiabatic Pauli susceptibility in fullerene compounds
Pauli paramagnetic susceptibility is unaffected by the electron-phonon
interaction in the Migdal-Eliashberg context. Fullerene compounds however do
not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic
effects are expected to be relevant in these materials. In this paper we
investigate the Pauli spin susceptibility in nonadiabatic regime by following a
conserving approach based on Ward's identity. We find that a sizable
renormalization of due to electron-phonon coupling appears when
nonadiabatic effects are taken into account. The intrinsic dependence of
on the electron-phonon interaction gives rise to a finite and negative isotope
effect which could be experimentally detected in fullerides. In addition, we
find an enhancement of the spin susceptibility with temperature increasing, in
agreement with the temperature dependence of observed in fullerene
compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include
On the possible space-time fractality of the emitting source
Using simple space-time implementation of the random cascade model we
investigate numerically a conjecture made some time ago which was joining the
intermittent behaviour of spectra of emitted particles with the possible
fractal structure of the emitting source. We demonstrate that such details are
seen, as expected, in the Bose-Einstein correlations between identical
particles. \\Comment: Thoroughly rewritten and modify version, to be published in Phys.
Rev.
- …