560 research outputs found
Slotted Rotatable Target Assembley and Systematic Error Analysis for a Search for Long Range Spin Dependent Interactions from Exotic Vector Boson Exchange Using Neutron Spin Rotation
We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutronâatominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - ÎŒm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method
AP-2α Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes
AP-2α and c-MYC are important transcription factors involved in multiple cellular processes. They each display the paradoxical capacities to stimulate both cell proliferation and apoptosis under different conditions. In the present study we found that over expression of c-MYC was associated with accumulation of reactive oxygen species (ROS) and apoptosis in human keratinocytes, both of which were significantly inhibited by co-expression of AP-2. The effects of AP-2 on c-MYC were active at several levels. First, AP-2 and c-MYC were confirmed to interact at the protein level as previously described. In addition, forced expression of AP-2 significantly decreased steady state levels of c-MYC mRNA and protein. These findings suggested that
AP-2 may have a direct effect on the c-myc gene. Chromatin immunoprecipitation assays demonstrated that AP-2 proteins bound to a cluster of AP-2 binding sites located within a 2 kb upstream regulatory region of c-myc These results suggest that the negative regulation of AP-2 on c-MYC activity was achieved through binding of AP-2 protein to the c-myc gene. The effects of AP-2 on c-MYC induced ROS accumulation and apoptosis in epidermal keratinocytes are likely to play an important role in cell growth, differentiation and carcinogenesis of the skin
Measurement of the Absolute np Scattering Differential Cross Section at 194 MeV
We describe a double-scattering experiment with a novel tagged neutron beam
to measure differential cross sections for np back-scattering to better than 2%
absolute precision. The measurement focuses on angles and energies where the
cross section magnitude and angle-dependence constrain the charged pion-nucleon
coupling constant, but existing data show serious discrepancies among
themselves and with energy-dependent partial wave analyses (PWA). The present
results are in good accord with the PWA, but deviate systematically from other
recent measurements.Comment: 4 pages, 4 figure
Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV
A tagged medium-energy neutron beam has been used in a precise measurement of
the absolute differential cross section for np back-scattering. The results
resolve significant discrepancies within the np database concerning the angular
dependence in this regime. The experiment has determined the absolute
normalization with 1.5% uncertainty, suitable to verify constraints of
supposedly comparable precision that arise from the rest of the database in
partial wave analyses. The analysis procedures, especially those associated
with evaluation of systematic errors in the experiment, are described in detail
so that systematic uncertainties may be included in a reasonable way in
subsequent partial wave analysis fits incorporating the present results.Comment: 22 pages, 21 figures, submitted for publication in Physical Review
Literature-based discovery of diabetes- and ROS-related targets
Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe
Parity violating neutron spin rotation in 4He and H
The weak interaction between nucleons leads to parity violation in various reaction observables. Neutron spin rotation, the rotation of the plane of polarization of a transversely polarized neutron beam passing through unpolarized matter, is an especially clear example of a breakdown in mirror symmetry. The Neutron Spin Rotation (NSR) Collaboration is engaged in an experimental program
to observe parity-odd neutron spin rotation. We recently completed the first phase of an experiment to measure parity violating neutron spin rotation in 4He. Our result for the neutron spin rotation angle per unit length in 4He, dÏ/dz = (+1.7 ± 9.1(stat.) ± 1.4(sys.)) Ă 10â7 rad/m, is the most sensitive search for neutron weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. This experiment was performed at the NG-6 slow neutron beamline at the National Institute of Standards and
Technology (NIST) Center for Neutron Research. The systematic uncertainty is small enough to proceed to the second phase of the 4He measurement at the new NG-C slow neutron beamline under construction at NIST. The projected intensity of this beam is high enough to see parity odd neutron spin rotation in 4He and to seriously consider a future experiment to measure neutron spin rotation in hydrogen
A Slow Neutron Polarimeter for the Measurement of Parity-Odd Neutron Rotary Power
We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutronoptical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable ofmeasuring a neutron rotary power of dÏ/dz = 1 Ă 10â7 rad/m
- âŠ