4 research outputs found

    Neuroimaging and serum biomarkers of neurodegeneration and neuroplasticity in Parkinson’s disease patients treated by intermittent theta-burst stimulation over the bilateral primary motor area: a randomized, double-blind, sham-controlled, crossover trial study

    Get PDF
    Background and objectives: Intermittent theta-burst stimulation (iTBS) is a patterned form of excitatory transcranial magnetic stimulation that has yielded encouraging results as an adjunctive therapeutic option to alleviate the emergence of clinical deficits in Parkinson’s disease (PD) patients. Although it has been demonstrated that iTBS influences dopamine-dependent corticostriatal plasticity, little research has examined the neurobiological mechanisms underlying iTBS-induced clinical enhancement. Here, our primary goal is to verify whether iTBS bilaterally delivered over the primary motor cortex (M1) is effective as an add-on treatment at reducing scores for both motor functional impairment and nonmotor symptoms in PD. We hypothesize that these clinical improvements following bilateral M1-iTBS could be driven by endogenous dopamine release, which may rebalance cortical excitability and restore compensatory striatal volume changes, resulting in increased striato-cortico-cerebellar functional connectivity and positively impacting neuroglia and neuroplasticity. Methods: A total of 24 PD patients will be assessed in a randomized, double-blind, sham-controlled crossover study involving the application of iTBS over the bilateral M1 (M1 iTBS). Patients on medication will be randomly assigned to receive real iTBS or control (sham) stimulation and will undergo 5 consecutive sessions (5 days) of iTBS over the bilateral M1 separated by a 3-month washout period. Motor evaluation will be performed at different follow-up visits along with a comprehensive neurocognitive assessment; evaluation of M1 excitability; combined structural magnetic resonance imaging (MRI), resting-state electroencephalography and functional MRI; and serum biomarker quantification of neuroaxonal damage, astrocytic reactivity, and neural plasticity prior to and after iTBS. Discussion: The findings of this study will help to clarify the efficiency of M1 iTBS for the treatment of PD and further provide specific neurobiological insights into improvements in motor and nonmotor symptoms in these patients. This novel project aims to yield more detailed structural and functional brain evaluations than previous studies while using a noninvasive approach, with the potential to identify prognostic neuroprotective biomarkers and elucidate the structural and functional mechanisms of M1 iTBS-induced plasticity in the cortico-basal ganglia circuitry. Our approach may significantly optimize neuromodulation paradigms to ensure state-of-the-art and scalable rehabilitative treatment to alleviate motor and nonmotor symptoms of PD.17 páginas

    Attentional networks in neurodegenerative diseases: anatomical and functional evidence from the Attention Network Test

    Full text link
    Introduction: Understanding alterations to brain anatomy and cognitive function associated with neurodegenerative diseases remains a challenge for neuroscience today. In experimental neuroscience, several computerised tests have been developed to contribute to our understanding of neural networks involved in cognition. The Attention Network Test (ANT) enables us to measure the activity of 3 attentional networks (alertness, orienting, and executive function). Objectives: The main aim of this review is to describe all the anatomical and functional alterations found in diverse neurological diseases using the ANT. Material and methods: We collected studies published since 2010 in the PubMed database that employed the ANT in different neurological diseases. Thirty-two articles were obtained, addressing multiple sclerosis, epilepsy, and Parkinson’s disease, among other disorders. Conclusions: Some of the anatomical structures proposed in the 3 attentional networks model were confirmed. The most relevant structures in the alertness network are the prefrontal cortex, parietal region, thalamus, and cerebellum. The thalamus is also relevant in the orienting network, together with posterior parietal regions. The executive network does not depend exclusively on the prefrontal cortex and anterior cingulate cortex, but also involves such subcortical structures as the basal ganglia and cerebellum and their projections towards the entire cortex. Resumen: Introducción: Comprender las alteraciones en la anatomía y función del cerebro en los procesos cognitivos para las enfermedades neurodegenerativas es aún un desafío para la neurociencia actual. Desde la neurociencia experimental, algunos tests computarizados han sido desarrollados para mejorar nuestro conocimiento de las redes neurales involucradas en la cognición. El Attention Network Test (ANT) permite medir la activad de las tres redes atencionales (alerta, orientación y función ejecutiva). Objetivos: El principal objetivo de esta revisión fue describir todas las alteraciones anatómicas y funcionales encontradas en diversas enfermedades neurológicas usando el ANT. Material y métodos: Un protocolo de revisión fue aplicado seleccionando estudios desde 2010 en la base de datos PubMed que involucraban al Attention Network Test en diferentes enfermedades neurológicas. Se obtuvieron treinta y dos artículos para esclerosis múltiple, epilepsia o Parkinson entre otras patologías. Conclusiones: Se confirman algunas de las estructuras anatómicas propuestas para el modelo de tres grandes redes atencionales. Las estructuras más relevantes para la red de alerta son la corteza prefrontal, regiones parietales, tálamo y el cerebelo. El tálamo es también relevante para la red de orientación, junto a regiones parietales posteriores. Respecto a la red ejecutiva, no depende exclusivamente de la corteza prefrontal y corteza cingulada anterior, sino también de estructuras subcorticales como los ganglios basales y el cerebelo y sus proyecciones hacia toda la corteza

    Revisión sistemática de la aplicación de algoritmos de «machine learning» en la esclerosis múltiple

    Full text link
    Resumen: Introducción: La aplicación de la inteligencia artificial y en particular de algoritmos de aprendizaje automático o «machine learning» (ML) constituye un desafío y al mismo tiempo una gran oportunidad en diversas disciplinas científicas, técnicas y clínicas. Las aplicaciones específicas en el estudio de la esclerosis múltiple (EM) no han sido una excepción mostrando un creciente interés en los últimos años. Objetivo: Realizar una revisión sistemática de la aplicación de algoritmos de ML en la EM. Material y métodos: Empleando el motor de búsqueda de libre acceso PubMed que accede a la base de datos MEDLINE, se seleccionaron aquellos estudios que incluyeran simultáneamente los dos siguientes conceptos de búsqueda: «machine learning» y «multiple sclerosis». Se rechazaron aquellos estudios que fueran revisiones, estuvieran en otro idioma que no fuera el castellano o el inglés, y aquellos trabajos que tuvieran un carácter técnico y no fueran aplicados para la EM. Se seleccionaron como válidos 76 artículos y fueron rechazados 38. Conclusiones: Tras la revisión de los estudios seleccionados, se pudo observar que la aplicación del ML en la EM se concentró en cuatro categorías: 1) clasificación de subtipos de pacientes dentro de la enfermedad; 2) diagnóstico del paciente frente a controles sanos u otras enfermedades; 3) predicción de la evolución o de la respuesta a intervenciones terapéuticas y por último 4) otros enfoques. Los resultados hallados hasta la fecha muestran que los diferentes algoritmos de ML pueden ser un gran apoyo para el profesional sanitario tanto en la clínica como en la investigación de la EM. Abstract: Introduction: The applications of artificial intelligence, and in particular automatic learning or “machine learning” (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. Objective: We present a systematic review of the application of ML algorithms in MS. Materials and methods: We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords “machine learning” and “multiple sclerosis.” We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. Conclusions: After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS
    corecore