3,390 research outputs found

    Non-LTE treatment of molecules in the photospheres of cool stars

    Get PDF
    We present a technique to treat systems with very many levels, like molecules, in non-LTE. This method is based on a superlevel formalism coupled with rate operator splitting. Superlevels consist of many individual levels that are assumed to be in LTE relative to each other. The usage of superlevels reduces the dimensionality of the rate equations dramatically and, thereby, makes the problem computationally more easily treatable. Our superlevel formalism retains maximum accuracy by using direct opacity sampling (dOS) when calculating the radiative transitions and the opacities. We developed this method in order to treat molecules in cool dwarf model calculations in non-LTE. Cool dwarfs have low electron densities and a radiation field that is far from a black body radiation field, both properties may invalidate the conditions for the common LTE approximation. Therefore, the most important opacity sources, the molecules, need to be treated in non-LTE. As a case study we applied our method to carbon monoxide. We find that our method gives accurate results since the conditions for the superlevel method are very well met for molecules. Due to very high collisional cross sections with hydrogen, and the high densities of H_2 the population of CO itself shows no significant deviation from LTE.Comment: AASTeX v50, 35 pages including 12 figures, accepted by Ap

    Conductivity in a symmetry broken phase: Spinless fermions with 1/d1/d corrections

    Full text link
    The dynamic conductivity σ(ω)\sigma(\omega) of strongly correlated electrons in a symmetry broken phase is investigated in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple cubic lattice. The investigated symmetry broken phase is the charge density wave (CDW) with wave vector Q=(π,π,π)Q=(\pi,\pi,\pi)^\dagger which occurs at half-filling. The calculations are based on the high dimensional approach, i.e. an expansion in the inverse dimension 1/d1/d is used. The finite dimensionality is accounted for by the inclusion of linear terms in 1/d1/d and the true finite dimensional DOS. Special care is paid to the setup of a conserving approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation is solved for the dynamic conductivity in the non symmetry broken and in the symmetry broken phase (AB-CDW). The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in the limit T0T \to 0 due to a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductivity σ(ω)\sigma(\omega) the energy gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of order 1/d1/d lead to an excitonic resonance lying within the gap.Comment: 23 pages, 19 figures included with psfig, Revtex; Physical Review B15, in press (October/November 1996) depending on the printer/screen driver, it might be necessary to comment out figures 3,4,5,10,11,12,19 and have them printed separatel

    Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultra subdwarfs (usdM)

    Full text link
    The current classification system of M stars on the main sequence distinguishes three metallicity classes (dwarfs - dM, subdwarfs - sdM, and extreme subdwarfs - esdM). The spectroscopic definition of these classes is based on the relative strength of prominent CaH and TiO molecular absorption bands near 7000A, as quantified by three spectroscopic indices (CaH2, CaH3, and TiO5). We re-examine this classification system in light of our ongoing spectroscopic survey of stars with proper motion \mu > 0.45 "/yr, which has increased the census of spectroscopically identified metal-poor M stars to over 400 objects. Kinematic separation of disk dwarfs and halo subdwarfs suggest deficiencies in the current classification system. Observations of common proper motion doubles indicates that the current dM/sdM and sdM/esdM boundaries in the [TiO5,CaH2+CaH3] index plane do not follow iso-metallicity contours, leaving some binaries inappropriately classified as dM+sdM or sdM+esdM. We propose a revision of the classification system based on an empirical calibration of the TiO/CaH ratio for stars of near solar metallicity. We introduce the parameter \zeta_{TiO/CaH} which quantifies the weakening of the TiO bandstrength due to metallicity effect, with values ranging from \zeta_{TiO/CaH}=1 for stars of near-solar metallicity to \zeta_{TiO/CaH}~0 for the most metal-poor (and TiO depleted) subdwarfs. We redefine the metallicity classes based on the value of the parameter \zeta_{TiO/CaH}; and refine the scheme by introducing an additional class of ultra subdwarfs (usdM). We introduce sequences of sdM, esdM, and usdM stars to be used as formal classification standards.Comment: 15 pages, accepted for publication in the Astrophysical Journa

    Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling

    Full text link
    The energy level statistics of 2D electrons with spin-orbit scattering are considered near the disorder induced metal-insulator transition. Using the Ando model, the nearest-level-spacing distribution is calculated numerically at the critical point. It is shown that the critical spacing distribution is size independent and has a Poisson-like decay at large spacings as distinct from the Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed Matter, in prin

    Sustainable growth in complex networks

    Full text link
    Based on the empirical analysis of the dependency network in 18 Java projects, we develop a novel model of network growth which considers both: an attachment mechanism and the addition of new nodes with a heterogeneous distribution of their initial degree, k0k_0. Empirically we find that the cumulative degree distributions of initial degrees and of the final network, follow power-law behaviors: P(k0)k01αP(k_{0}) \propto k_{0}^{1-\alpha}, and P(k)k1γP(k)\propto k^{1-\gamma}, respectively. For the total number of links as a function of the network size, we find empirically K(N)NβK(N)\propto N^{\beta}, where β\beta is (at the beginning of the network evolution) between 1.25 and 2, while converging to 1\sim 1 for large NN. This indicates a transition from a growth regime with increasing network density towards a sustainable regime, which revents a collapse because of ever increasing dependencies. Our theoretical framework is able to predict relations between the exponents α\alpha, β\beta, γ\gamma, which also link issues of software engineering and developer activity. These relations are verified by means of computer simulations and empirical investigations. They indicate that the growth of real Open Source Software networks occurs on the edge between two regimes, which are either dominated by the initial degree distribution of added nodes, or by the preferential attachment mechanism. Hence, the heterogeneous degree distribution of newly added nodes, found empirically, is essential to describe the laws of sustainable growth in networks.Comment: 5 pages, 2 figures, 1 tabl

    A k-shell decomposition method for weighted networks

    Full text link
    We present a generalized method for calculating the k-shell structure of weighted networks. The method takes into account both the weight and the degree of a network, in such a way that in the absence of weights we resume the shell structure obtained by the classic k-shell decomposition. In the presence of weights, we show that the method is able to partition the network in a more refined way, without the need of any arbitrary threshold on the weight values. Furthermore, by simulating spreading processes using the susceptible-infectious-recovered model in four different weighted real-world networks, we show that the weighted k-shell decomposition method ranks the nodes more accurately, by placing nodes with higher spreading potential into shells closer to the core. In addition, we demonstrate our new method on a real economic network and show that the core calculated using the weighted k-shell method is more meaningful from an economic perspective when compared with the unweighted one.Comment: 17 pages, 6 figure

    Risk-Seeking versus Risk-Avoiding Investments in Noisy Periodic Environments

    Full text link
    We study the performance of various agent strategies in an artificial investment scenario. Agents are equipped with a budget, x(t)x(t), and at each time step invest a particular fraction, q(t)q(t), of their budget. The return on investment (RoI), r(t)r(t), is characterized by a periodic function with different types and levels of noise. Risk-avoiding agents choose their fraction q(t)q(t) proportional to the expected positive RoI, while risk-seeking agents always choose a maximum value qmaxq_{max} if they predict the RoI to be positive ("everything on red"). In addition to these different strategies, agents have different capabilities to predict the future r(t)r(t), dependent on their internal complexity. Here, we compare 'zero-intelligent' agents using technical analysis (such as moving least squares) with agents using reinforcement learning or genetic algorithms to predict r(t)r(t). The performance of agents is measured by their average budget growth after a certain number of time steps. We present results of extensive computer simulations, which show that, for our given artificial environment, (i) the risk-seeking strategy outperforms the risk-avoiding one, and (ii) the genetic algorithm was able to find this optimal strategy itself, and thus outperforms other prediction approaches considered.Comment: 27 pp. v2 with minor corrections. See http://www.sg.ethz.ch for more inf

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    The Anderson Transition in Two-Dimensional Systems with Spin-Orbit Coupling

    Full text link
    We report a numerical investigation of the Anderson transition in two-dimensional systems with spin-orbit coupling. An accurate estimate of the critical exponent ν\nu for the divergence of the localization length in this universality class has to our knowledge not been reported in the literature. Here we analyse the SU(2) model. We find that for this model corrections to scaling due to irrelevant scaling variables may be neglected permitting an accurate estimate of the exponent ν=2.73±0.02\nu=2.73 \pm 0.02
    corecore