15 research outputs found

    Scalable quantum search using trapped ions

    Full text link
    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using simple adiabatic techniques. The inversion-about-average and the oracle operators take the form of single off-resonant laser pulses, addressing, respectively, all and half of the ions in the trap. This is made possible by utilizing the physical symmetrie of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This does not only facilitate the implementation, but also increases the overall fidelity of the algorithm.Comment: 6 pages, 2 figure

    Physical realization of coupled Hilbert-space mirrors for quantum-state engineering

    Full text link
    Manipulation of superpositions of discrete quantum states has a mathematical counterpart in the motion of a unit-length statevector in an N-dimensional Hilbert space. Any such statevector motion can be regarded as a succession of two-dimensional rotations. But the desired statevector change can also be treated as a succession of reflections, the generalization of Householder transformations. In multidimensional Hilbert space such reflection sequences offer more efficient procedures for statevector manipulation than do sequences of rotations. We here show how such reflections can be designed for a system with two degenerate levels - a generalization of the traditional two-state atom - that allows the construction of propagators for angular momentum states. We use the Morris-Shore transformation to express the propagator in terms of Morris-Shore basis states and Cayley-Klein parameters, which allows us to connect properties of laser pulses to Hilbert-space motion. Under suitable conditions on the couplings and the common detuning, the propagators within each set of degenerate states represent products of generalized Householder reflections, with orthogonal vectors. We propose physical realizations of this novel geometrical object with resonant, near-resonant and far-off-resonant laser pulses. We give several examples of implementations in real atoms or molecules.Comment: 15 pages, 6 figure

    Population trapping in three-state quantum loops revealed by Householder reflections

    Full text link
    Population trapping occurs when a particular quantum-state superposition is immune to action by a specific interaction, such as the well-known dark state in a three-state lambda system. We here show that in a three-state loop linkage, a Hilbert-space Householder reflection breaks the loop and presents the linkage as a single chain. With certain conditions on the interaction parameters, this chain can break into a simple two-state system and an additional spectator state. Alternatively, a two-photon resonance condition in this Householder-basis chain can be enforced, which heralds the existence of another spectator state. These spectator states generalize the usual dark state to include contributions from all three bare basis states and disclose hidden population trapping effects, and hence hidden constants of motion. Insofar as a spectator state simplifies the overall dynamics, its existence facilitates the derivation of analytic solutions and the design of recipes for quantum state engineering in the loop system. Moreover, it is shown that a suitable sequence of Householder transformations can cast an arbitrary N-dimensional hermitian Hamiltonian into a tridiagonal form. The implication is that a general N-state system, with arbitrary linkage patterns where each state connects to any other state, can be reduced to an equivalent chainwise-connected system, with nearest-neighbor interactions only, with ensuing possibilities for discovering hidden multidimensional spectator states and constants of motion

    Efficient quantum computation of molecular forces and other energy gradients

    Full text link
    While most work on the quantum simulation of chemistry has focused on computing energy surfaces, a similarly important application requiring subtly different algorithms is the computation of energy derivatives. Almost all molecular properties can be expressed an energy derivative, including molecular forces, which are essential for applications such as molecular dynamics simulations. Here, we introduce new quantum algorithms for computing molecular energy derivatives with significantly lower complexity than prior methods. Under cost models appropriate for noisy-intermediate scale quantum devices we demonstrate how low rank factorizations and other tomography schemes can be optimized for energy derivative calculations. We perform numerics revealing that our techniques reduce the number of circuit repetitions required by many orders of magnitude for even modest systems. In the context of fault-tolerant algorithms, we develop new methods of estimating energy derivatives with Heisenberg limited scaling incorporating state-of-the-art techniques for block encoding fermionic operators. Our results suggest that the calculation of forces on a single nucleus may be of similar cost to estimating energies of chemical systems, but that further developments are needed for quantum computers to meaningfully assist with molecular dynamics simulations.Comment: 48 pages, 14 page appendix, 10 figures. v2 contains updated lambdas (rescaling factors) for sparse FT encodings and some NISQ methods, obtained by localizing orbital
    corecore