5,476 research outputs found

    Proliferative capacity of murine hematopoietic stem cells.

    Full text link

    Processing and Transmission of Information

    Get PDF
    Contains reports on five research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)National Science Foundation (Grant GK-5800

    Is Breast Irradiation Routinely Necessary Following Conservation Therapy of Breast Cancer?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75500/1/j.1524-4741.1995.tb00238.x.pd

    Processing and Transmission of Information

    Get PDF
    Contains research objectives, summary of research and reports on two research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)U. S. Army Research Office - Durham (Contract DAHCO4-69-C-0042

    Origin of the ϕ ∼ ±9° peaks in YBa2Cu3O7−δ films grown on cubic zirconia substrates

    Get PDF
    The c-axis oriented YBa2Cu3O7−δ films grown on (001) yttria-stabilized cubic zirconia (YSZ) substrates often contain domains whose in-plane alignment is rotated approximately 9° from the cube-on-cube epitaxial relationship, in addition to the more commonly observed 0° and 45° in-plane rotations. We have investigated the origin of this ∼9° orientation using in situ electron diffraction during growth and ex situ 4-circle x-ray diffraction. Our results indicate that the ∼9° orientation provides the most favorable lattice match between the interfacial (110)-oriented BaZrO3 epitaxial reaction layer, which forms between YBa2Cu3O7−δ and the YSZ substrate. If epitaxy occurs directly between YBa2Cu3O7−δ and the YSZ substrate, i.e., before the BaZrO3 epitaxial reaction layer is formed, the 0° and 45° domains have the most favorable lattice match. However, growth conditions that favor the formation of the BaZrO3 reaction layer prior to the nucleation of YBa2Cu3O7−δ lead to an increase in ∼9° domains. The observed phenomenon, which results from epitaxial alignment between the diagonal of a square surface net and the diagonal of a rectangular surface net, is a general method for producing in-plane misorientations, and has also been observed for the heteroepitaxial growth of other materials, including (Ba, K)BiO3/LaAlO3. The YBa2Cu3O7−δ/YSZ case involves epitaxial alignment between [111]BaZrO3 and [110]YSZ, resulting in an expected in-plane rotation of 11.3° to 9.7° for fully commensurate and for fully relaxed (110)BaZrO3 on (001)YSZ, respectivel

    Quasiparticle properties of a coupled quantum wire electron-phonon system

    Get PDF
    We study leading-order many-body effects of longitudinal optical (LO) phonons on electronic properties of one-dimensional quantum wire systems. We calculate the quasiparticle properties of a weakly polar one dimensional electron gas in the presence of both electron-phonon and electron-electron interactions. The leading-order dynamical screening approximation (GW approximation) is used to obtain the electron self-energy, the quasiparticle spectral function, and the quasiparticle damping rate in our calculation by treating electrons and phonons on an equal footing. Our theory includes effects (within the random phase approximation) of Fermi statistics, Landau damping, plasmon-phonon mode coupling, phonon renormalization, dynamical screening, and impurity scattering. In general, electron-electron and electron-phonon many-body renormalization effects are found to be nonmultiplicative and nonadditive in our theoretical results for quasiparticle properties.Comment: 21 pages, Revtex, 12 figures enclose

    Phonons and elasticity of cementite through the Curie temperature

    Get PDF
    Phonon partial densities of states (pDOS) of ^(57)Fe_3 C were measured from cryogenic temperatures through the Curie transition at 460 K using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that low-energy acoustic phonons shift to higher energies (stiffen) with temperature before the magnetic transition. This unexpected stiffening suggests strongly nonharmonic vibrational behavior that impacts the thermodynamics and elastic properties of cementite. Density functional theory calculations reproduced the anomalous stiffening observed experimentally in cementite by accounting for phonon-phonon interactions at finite temperatures. The calculations show that the low-energy acoustic phonon branches with polarizations along the [010] direction are largely responsible for the anomalous thermal stiffening. The effect was further localized to the motions of the Fe_(II) site within the orthorhombic structure, which participates disproportionately in the anomalous phonon stiffening

    Pulsatility of insulin release – a clinically important phenomenon

    Get PDF
    The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting β-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the β-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing ι-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood

    The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?

    Full text link
    We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the far-infrared region using Migdal-Eliashberg theory and found it inconsistent with standard electron-phonon coupling: Whereas the superconducting state data could be explained using moderate coupling, \lambda=0.7, the normal state properties indicate \lambda \le 0.2. We have found that such behaviour could be understood using a simple model consisting of weak standard electron-phonon coupling plus weak coupling to an unspecified high energy excitation near 0.4 eV. This model is found to be in general agreement with the reflectivity data, except for the predicted superconducting gap size. The additional high energy excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys. Rev.
    • …
    corecore