42 research outputs found
Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors
We measured the single-photon detection efficiency of NbN superconducting
single photon detectors as a function of the polarization state of the incident
light for different wavelengths in the range from 488 nm to 1550 nm. The
polarization contrast varies from ~5% at 488 nm to ~30% at 1550 nm, in good
agreement with numerical calculations. We use an optical-impedance model to
describe the absorption for polarization parallel to the wires of the detector.
For lossy NbN films, the absorption can be kept constant by keeping the product
of layer thickness and filling factor constant. As a consequence, we find that
the maximum possible absorption is independent of filling factor. By
illuminating the detector through the substrate, an absorption efficiency of
~70% can be reached for a detector on Si or GaAs, without the need for an
optical cavity.Comment: 15 pages, 5 figures, submitted to Journal of Applied Physic
Superconducting nanowire photon number resolving detector at telecom wavelength
The optical-to-electrical conversion, which is the basis of optical
detectors, can be linear or nonlinear. When high sensitivities are needed
single-photon detectors (SPDs) are used, which operate in a strongly nonlinear
mode, their response being independent of the photon number. Nevertheless,
photon-number resolving (PNR) detectors are needed, particularly in quantum
optics, where n-photon states are routinely produced. In quantum communication,
the PNR functionality is key to many protocols for establishing, swapping and
measuring entanglement, and can be used to detect photon-number-splitting
attacks. A linear detector with single-photon sensitivity can also be used for
measuring a temporal waveform at extremely low light levels, e.g. in
long-distance optical communications, fluorescence spectroscopy, optical
time-domain reflectometry. We demonstrate here a PNR detector based on parallel
superconducting nanowires and capable of counting up to 4 photons at
telecommunication wavelengths, with ultralow dark count rate and high counting
frequency
High Speed and High Efficiency Travelling Wave Single-Photon Detectors Embedded in Nanophotonic Circuits
Ultrafast, high quantum efficiency single photon detectors are among the most
sought-after elements in modern quantum optics and quantum communication. High
photon detection efficiency is essential for scalable measurement-based quantum
computation, quantum key distribution, and loophole-free Bell experiments.
However, imperfect modal matching and finite photon absorption rates have
usually limited the maximum attainable detection efficiency of single photon
detectors. Here we demonstrate a superconducting nanowire detector atop
nanophotonic waveguides which allows us to drastically increase the absorption
length for incoming photons. When operating the detectors close to the critical
current we achieve high on-chip single photon detection efficiency up to 91% at
telecom wavelengths, with uncertainty dictated by the variation of the
waveguide photon flux. We also observe remarkably low dark count rates without
significant compromise of detection efficiency. Furthermore, our detectors are
fully embedded in a scalable silicon photonic circuit and provide ultrashort
timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate
ballistic photon transport in silicon ring resonators. The direct
implementation of such a detector with high quantum efficiency, high detection
speed and low jitter time on chip overcomes a major barrier in integrated
quantum photonics
Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures
Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression.United States. Dept. of Energy (Frontier Research Centers