19 research outputs found

    Severe Exercise and Exercise Training Exert Opposite Effects on Human Neutrophil Apoptosis via Altering the Redox Status

    Get PDF
    Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS) and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE) usually impedes immunity, chronic moderate exercise (CME) improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8) underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface) along with redox-related parameters and mitochondria-related parameters. Our results showed that i) the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation), and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii) CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii) most effects of CME were unchanged after detraining; and iv) CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H2O2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining

    Evidence for a role for SAM68 in the responses of human neutrophils to ligation of CD32 and to monosodium urate crystals

    No full text
    Copyright © 2001 by The American Association of ImmunologistsSAM68 (Src-associated in mitosis 68 kDa) is a member of the signal transduction of activator RNA novel gene family coding for proteins postulated to be involved in signal transduction and activation of RNA. It has been implicated through its phosphorylation status in the control of the transition from the G1 to the S phases during mitosis. However, the implication and role of SAM68 in nonproliferative cells are unknown. The present study was initiated to examine the role of SAM68 in the phagocytic responses of the terminally differentiated human neutrophils. The results obtained show that SAM68 is present in human neutrophils and that it is tyrosine phosphorylated in response to stimulation by monosodium urate crystals or by ligation of CD32. Stimulation of neutrophils by these agonists decreases the association of SAM68 with Sepharose-conjugated poly-U beads. Additionally, the amount of immunoprecipitable SAM68 was modulated differentially after stimulation by monosodium urate crystals or by CD32 engagement indicating that the posttranslational modifications and/or protein associations of SAM68 induced by these two agonists differed. The results of this study provide evidence for an involvement of SAM68 in signal transduction by phagocytic agonists in human neutrophils and indicate that SAM68 may play a role in linking the early events of signal transduction to the posttranscriptional modulation of RNA.Caroline Gilbert, Frédéric Barabé, Emmanuelle Rollet-Labelle, Sylvain G. Bourgoin, Shaun R. McColl, Bassam B. Damaj and Paul H. Naccach

    Platelets release mitochondrial antigens in systemic lupus erythematosus

    No full text
    The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet Fc gamma RIIA, a receptor for immune complexes. Because mice lack Fc gamma RIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing Fc gamma RIIA for our in vivo investigations. Fc gamma RIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by Fc gamma RIIA and its cosignaling by the fibrinogen receptor alpha 2b beta 3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE
    corecore