48 research outputs found

    INTERLAYER COUPLING AND THE METAL-INSULATOR TRANSITION IN Pr-SUBSTITUTED Bi(2)Sr(2)CaCu(2)O(8+y)

    Full text link
    Substitution of rare-earth ions for Ca in Bi2Sr2CaCu2O8+y is known to cause a metal-insulator transition. Using resonant photoemission we study how this chemical substitution affects the electronic structure of the material. For the partial Cu-density of states at E_F and in the region of the valence band we observe no significant difference between a pure superconducting sample and an insulating sample with 60% Pr for Ca. This suggests that the states responsible for superconductivity are predomi- nately O-states. The partial Pr-4f density of states was extracted utilizing the Super- Koster-Kronig Pr 4d-4f resonance. It consists of a single peak at 1.36eV binding energy. The peak shows a strongly assymetric Doniach-Sunjic line- shape indicating the presence of a continuum of electronic states with sharp cut off at E_F even in this insulating sample. This finding excludes a bandgap in the insulating sample and supports the existance of a mobility gap caused by spatial localization of the carriers. The presence of such carriers at the Pr-site, between the CuO_2 planes shows that the electronic structure is not purely 2-dimensional but that there is a finite interlayer coupling. The resonance enhancement of the photoemission cross section, at the Pr-4d threshold, was studied for the Pr-4f and for Cu-states. Both the Pr-4f and the Cu-states show a Fano-like resonance. This resonance of Cu-states with Pr-states is another indication of coupling between the the Pr-states and those in the CuO_2 plane. Because of the statistical distribution of the Pr-ions this coupling leads to a non-periodic potential for the states in the CuO_2 plane which can lead to localization and thus to the observed metal-insulator transition.Comment: Gziped uuencoded postscript file including 7 figures Scheduled for publication in Physical Review B, May 1, 1995

    Hypoglossal nerve trunk stimulation: electromyography findings during drug-induced sleep endoscopy: a case report

    No full text
    Abstract Background Literature has demonstrated hypoglossal nerve stimulation to be a safe and effective treatment for patients with obstructive sleep apnea nonadherent to positive airway pressure therapy. However, the recommended criteria for patient selection are still unable to identify all the unresponsive patients, highlighting the need for improved understanding about hypoglossal nerve stimulation for obstructive sleep apnea. Case presentation A 48-year-old Caucasian male patient with obstructive sleep apnea had been successfully treated with electrical stimulation of the hypoglossal nerve trunk, documented by level 1 polysomnography data. However, due to snoring complaints, he underwent postoperation drug-induced sleep endoscopy for evaluation of electrode activation during upper airway collapse, aiming to improve electrostimulation parameters. Concurrent surface electromyography of the suprahyoid muscles and masseter was obtained. Activation of electrodes 2, 3, and 6 promoted upper airway opening most strongly at the velopharynx and tongue base during drug-induced sleep endoscopy. The same channels also significantly increased the electrical activity on suprahyoid muscles bilaterally, but predominantly on the stimulated side (right). The masseters also presented a considerable asymmetry in electrical potential on the right side (> 55%). Conclusion Beyond the genioglossus muscle, our findings demonstrate recruitment of other muscles during hypoglossal nerve stimulation, which may be attributed to the electrical stimulation of the nerve trunk. This data provides new insights on how stimulation of the hypoglossal nerve trunk may contribute to obstructive sleep apnea treatment
    corecore