2 research outputs found
Destabilization of tetranucleotide repeats in Haemophilus influenzae mutants lacking RnaseHI or the Klenow domain of PolI.
A feature of Haemophilus influenzae genomes is the presence of several loci containing tracts of six or more identical tetranucleotide repeat units. These repeat tracts are unstable and mediate high frequency, reversible alterations in the expression of surface antigens. This process, termed phase variation (PV), enables H.influenzae to rapidly adapt to fluctuations in the host environment. Perturbation of lagging strand DNA synthesis is known to destabilize simple sequence repeats in yeast and Escherichia coli. By using a chromosomally located reporter construct, we demonstrated that the mutation of an H.influenzae rnhA (encoding RnaseHI) homologue increases the mutation rates of tetranucleotide repeats ∼3-fold. Additionally, deletion of the Klenow domain of DNA polymerase I (PolI) resulted in a ∼35-fold increase in tetranucleotide repeat-mediated PV rates. Deletion of the PolI 5′>3′ exonuclease domain appears to be lethal. The phenotypes of these mutants suggest that delayed or mutagenic Okazaki fragment processing destabilizes H.influenzae tetranucleotide repeat tracts
Broad conditions favor the evolution of phase-variable loci.
Simple sequence repeat (SSR) tracts produce stochastic on-off switching, or phase variation, in the expression of a panoply of surface molecules in many bacterial commensals and pathogens. A change to the number of repeats in a tract may alter the phase of the translational reading frame, which toggles the on-off state of the switch. Here, we construct an in silico SSR locus with mutational dynamics calibrated to those of the Haemophilus influenzae mod locus. We simulate its evolution in a regimen of two alternating environments, simultaneously varying the selection coefficient, s, and the epoch length, T. Some recent work in a simpler (two-locus) model suggested that stochastic switching in a regimen of two alternating environments may be evolutionarily favored only if the selection coefficients in the two environments are nearly equal (“symmetric”) or selection is very strong. This finding was puzzling, as it greatly restricted the conditions under which stochastic switching might evolve. Instead, we find agreement with other recent theoretical work, observing selective utility for stochastic switching if the product sT is large enough for the favored state to nearly fix in both environments. Symmetry is required neither in s nor in sT. Because we simulate finite populations and use a detailed model of the SSR locus, we are also able to examine the impact of population size and of several SSR locus parameters. Our results indicate that conditions favoring evolution and maintenance of SSR loci in bacteria are quite broad