338 research outputs found
Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy
It is generally believed that increase in adult contractile cardiac mass can be accomplished only by hypertrophy of existing myocytes. Documentation of myocardial regeneration in acute stress has challenged this dogma and led to the proposition that myocyte renewal is fundamental to cardiac homeostasis. Here we report that in human aortic stenosis, increased cardiac mass results from a combination of myocyte hypertrophy and hyperplasia. Intense new myocyte formation results from the differentiation of stem-like cells committed to the myocyte lineage. These cells express stem cell markers and telomerase. Their number increased >13-fold in aortic stenosis. The finding of cell clusters with stem cells making the transition to cardiogenic and myocyte precursors, as well as very primitive myocytes that turn into terminally differentiated myocytes, provides a link between cardiac stem cells and myocyte differentiation. Growth and differentiation of these primitive cells was markedly enhanced in hypertrophy, consistent with activation of a restricted number of stem cells that, through symmetrical cell division, generate asynchronously differentiating progeny. These clusters strongly support the existence of cardiac stem cells that amplify and commit to the myocyte lineage in response to increased workload. Their presence is consistent with the notion that myocyte hyperplasia significantly contributes to cardiac hypertrophy and accounts for the subpopulation of cycling myocytes
LED lighting systems for horticulture: Business growth and global distribution
In recent years, research on light emitting diodes (LEDs) has highlighted their great potential as a lighting system for plant growth, development and metabolism control. The suitability of LED devices for plant cultivation has turned the technology into a main component in controlled or closed plant-growing environments, experiencing an extremely fast development of horticulture LED metrics. In this context, the present study aims to provide an insight into the current global horticulture LED industry and the present features and potentialities for LEDs' applications. An updated review of this industry has been integrated through a database compilation of 301 manufacturers and 1473 LED lighting systems for plant growth. The research identifies Europe (40%) and North America (29%) as the main regions for production. Additionally, the current LED luminaires' lifespans show 10 and 30% losses of light output after 45,000 and 60,000 working hours on average, respectively, while the vast majority of worldwide LED lighting systems present efficacy values ranging from 2 to 3 μmol J-1 (70%). Thus, an update on the status of the horticultural LED sector, LEDs' applications and metrics, and the intense innovation are described and discussed
Cobalt oxide nanoparticles induce oxidative stress and alter electromechanical function in rat ventricular myocytes
Background: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. Results: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. Conclusions: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality
PD-L1 SNPs as biomarkers to define benefit in patients with advanced NSCLC treated with immune checkpoint inhibitors
Objective: To investigate the role of CTLA-4, PD-1 (programmed death-1), and PD-L1 (programmed death-ligand 1) single nucleotide polymorphisms (SNPs) in predicting clinical outcome of patients with advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). Methods: A total of 166 consecutive patients were included. We correlated SNPs with clinical benefit, progression-free survival, time to treatment failure, and overall survival and evaluated the incidence of SNPs in nonresponder and long clinical benefit groups. Results: Considering the entire cohort, no correlation was found between SNPs and clinical outcome; however, PD-L1 rs4143815 SNP and the long clinical benefit group showed a statistically significant association (p = 0.02). The nonresponder cohort displayed distinctive PD-L1 haplotype (p = 0.05). Conclusion: PD-L1 SNPs seem to be marginally involved in predicting clinical outcome of NSCLC treated with ICI, but further investigations are required
Soluble PD-L1 and Circulating CD8+PD-1+ and NK Cells Enclose a Prognostic and Predictive Immune Effector Score in Immunotherapy Treated NSCLC patients
Introduction: Upfront criteria to foresee immune checkpoint inhibitors (ICIs) efficacy are far from being identified. Thus, we integrated blood descriptors of pro-inflammatory/immunosuppressive or effective anti-tumor response to non-invasively define predictive immune profiles in ICI-treated advanced non-small cell lung cancer (NSCLC). Methods: Peripheral blood (PB) was prospectively collected at baseline from 109 consecutive NSCLC patients undergoing ICIs as first or more line treatment. Soluble PD-L1 (sPD-L1) (immunoassay), CD8+PD-1+ and NK (FACS) cells were assessed and interlaced to generate an Immune effector Score (IeffS). Lung Immune Prognostic Index (LIPI) was computed by LDH levels and derived Neutrophil-to-Lymphocyte Ratio (dNLR). All these parameters were correlated with survival outcome and treatment response. Results: High sPD-L1 and low CD8+PD-1+ and NK number had negative impact on PFS (P < 0.001), OS (P < 0.01) and ICI-response (P < 0.05). Thus, sPD-L1high, CD8+PD-1+low and NKlow were considered as risk factors encompassing IeffS, whose prognostic power outperformed that of individual features and slightly exceeded that of LIPI. Accordingly, the absence of these risk factors portrayed a favorable IeffS characterizing patients with significantly (P < 0.001) prolonged PFS (median NR vs 2.3 months) and OS (median NR vs 4.1) and greater benefit from ICIs (P < 0.01). We then combined each risk parameter composing IeffS and LIPI (LDHhigh, dNLRhigh), thus defining three distinct prognostic classes. A remarkable impact of IeffS-LIPI integration was documented on survival outcome (PFS, HR = 4.61; 95%CI = 2.32-9.18; P < 0.001; OS, HR=4.03; 95%CI=1.91-8.67; P < 0.001) and ICI-response (AUC=0.90, 95%CI=0.81-0.97, P < 0.001). Conclusion: Composite risk models based on blood parameters featuring the tumor-host interaction might provide accurate prognostic scores able to predict ICI benefit in NSCLC patients
Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival.
Cardiac stem cells and early committed cells (CSCs-ECCs) express c-Met and insulin-like growth factor-1
(IGF-1) receptors and synthesize and secrete the corresponding ligands, hepatocyte growth factor (HGF) and IGF-1.
HGF mobilizes CSCs-ECCs and IGF-1 promotes their survival and proliferation. Therefore, HGF and IGF-1 were
injected in the hearts of infarcted mice to favor, respectively, the translocation of CSCs-ECCs from the surrounding
myocardium to the dead tissue and the viability and growth of these cells within the damaged area. To facilitate
migration and homing of CSCs-ECCs to the infarct, a growth factor gradient was introduced between the site of storage
of primitive cells in the atria and the region bordering the infarct. The newly-formed myocardium contained arterioles,
capillaries, and functionally competent myocytes that with time increased in size, improving ventricular performance at
healing and long thereafter. The volume of regenerated myocytes was 2200 m3 at 16 days after treatment and reached
5100 m3 at 4 months. In this interval, nearly 20% of myocytes reached the adult phenotype, varying in size from 10 000
to 20 000 m3. Moreover, there were 4313 arterioles and 15548 capillaries/mm2 myocardium at 16 days, and 316
arterioles and 39056 capillaries at 4 months. Myocardial regeneration induced increased survival and rescued animals
with infarcts that were up to 86% of the ventricle, which are commonly fatal. In conclusion, the heart has an endogenous
reserve of CSCs-ECCs that can be activated to reconstitute dead myocardium and recover cardiac function
Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats
One of the main cause of ineffective cell therapy in repairing the damaged heart is the poor yield of grafted cells. To overcome this drawback, rats with 4-week-old myocardial infarction (MI) were injected in the border zone with human adipose-derived stem cells (ADSCs) conveyed by poly(lactic-co-glycolic acid) microcarriers (PAMs) releasing hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) (GFsPAMs). According to treatments, animals were subdivided into different groups: MI_ADSC, MI_ADSC/PAM, MI_GFsPAM, MI_ADSC/GFsPAM, and untreated MI_V. Two weeks after injection, a 31% increase in ADSC engraftment was observed in MI_ADSC/PAM compared with MI_ADSC (p < 0.05). A further ADSC retention was obtained in MI_ADSC/GFsPAM with respect to MI_ADSC (106%, p < 0.05) and MI_ADSC/PAM (57%, p < 0.05). A 130% higher density of blood vessels of medium size was present in MI_ADSC/GFsPAM compared with MI_ADSC (p < 0.01). MI_ADSC/GFsPAM also improved, albeit slightly, left ventricular remodeling and hemodynamics with respect to the other groups. Notably, ADSCs and/or PAMs, with or without HGF/IGF-1, trended to induce arrhythmias in electrically driven, Langendorff-perfused, hearts of all groups. Thus, PAMs releasing HGF/IGF-1 markedly increase ADSC engraftment 2 weeks after injection and stimulate healing in chronically infarcted myocardium, but attention should be paid to potentially negative electrophysiological consequences
Fetal Myocardium in the Kidney Capsule: An In Vivo Model of Repopulation of Myocytes by Bone Marrow Cells
Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model — a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors
- …