72 research outputs found

    Distilling entanglement from cascades with partial "Which Path" ambiguity

    Full text link
    We develop a framework to calculate the density matrix of a pair of photons emitted in a decay cascade with partial "which path" ambiguity. We describe an appropriate entanglement distillation scheme which works also for certain random cascades. The qualitative features of the distilled entanglement are presented in a two dimensional "phase diagram". The theory is applied to the quantum tomography of the decay cascade of a biexciton in a semiconductor quantum dot. Agreement with experiment is obtained

    Radiative cascades in charged quantum dots

    Full text link
    We measured, for the first time, two photon radiative cascades due to sequential recombination of quantum dot confined electron hole pairs in the presence of an additional spectator charge carrier. We identified direct, all optical cascades involving spin blockaded intermediate states, and indirect cascades, in which non radiative relaxation precedes the second recombination. Our measurements provide also spin dephasing rates of confined carriers.Comment: 4 pages, 3 figure

    Two-photon- photoluminescence excitation spectroscopy of single quantum-dots

    Full text link
    We present experimental and theoretical study of single semiconductor quantum dots excited by two non-degenerate, resonantly tuned variably polarized lasers. The first laser is tuned to excitonic resonances. Depending on its polarization it photogenerates a coherent single exciton state. The second laser is tuned to biexciton resonances. By scanning the energy of the second laser for various polarizations of the two lasers, while monitoring the emission from the biexciton and exciton spectral lines, we map the biexciton photoluminescence excitation spectra. The resonances rich spectra of the second photon absorption are analyzed and fully understood in terms of a many carrier theoretical model which takes into account the direct and exchange Coulomb interactions between the quantum confined carriers.Comment: Accepted for publication in PR

    Polarization memory in single Quantum Dots

    Full text link
    We measured the polarization memory of excitonic and biexcitonic optical transitions from single quantum dots at either positive, negative or neutral charge states. Positive, negative and no circular or linear polarization memory was observed for various spectral lines, under the same quasi-resonant excitation below the wetting layer band-gap. We developed a model which explains both qualitatively and quantitatively the experimentally measured polarization spectrum for all these optical transitions. We consider quite generally the loss of spin orientation of the photogenerated electron-hole pair during their relaxation towards the many-carrier ground states. Our analysis unambiguously demonstrates that while electrons maintain their initial spin polarization to a large degree, holes completely dephase.Comment: 6 pages, 4 figure

    Excitation spectroscopy of single quantum dots at tunable positive, neutral and negative charge states

    Full text link
    We present a comprehensive study of the optical transitions and selection rules of variably charged single self-assembled InAs/GaAs quantum dots. We apply high resolution polarization sensitive photoluminescence excitation spectroscopy to the same quantum dot for three different charge states: neutral and negatively or positively charged by one additional electron or hole. From the detailed analysis of the excitation spectra, a full understanding of the single-carrier energy levels and the interactions between carriers in these levels is extracted for the first time.Comment: 8 pages, 5 figure

    Complete control of a matter qubit using a single picosecond laser pulse

    Full text link
    We demonstrate for the first time that a matter physical two level system, a qubit, can be fully controlled using one ultrafast step. We show that the spin state of an optically excited electron, an exciton, confined in a quantum dot, can be rotated by any desired angle, about any desired axis, during such a step. For this we use a single, resonantly tuned, picosecond long, polarized optical pulse. The polarization of the pulse defines the rotation axis, while the pulse detuning from a non-degenerate absorption resonance, defines the magnitude of the rotation angle. We thereby achieve a high fidelity, universal gate operation, applicable to other spin systems, using only one short optical pulse. The operation duration equals the pulse temporal width, orders of magnitude shorter than the qubit evolution life and coherence times.Comment: main text: 4 pages, 3 figures Supplemental material: 3 pages, 1 figur

    Radiative cascade from quantum dot metastable spin-blockaded biexciton

    Get PDF
    We detect a novel radiative cascade from a neutral semiconductor quantum dot. The cascade initiates from a metastable biexciton state in which the holes form a spin-triplet configuration, Pauli-blockaded from relaxation to the spin-singlet ground state. The triplet biexciton has two photon-phonon-photon decay paths. Unlike in the singlet-ground state biexciton radiative cascade, in which the two photons are co-linearly polarized, in the triplet biexciton cascade they are crosslinearly polarized. We measured the two-photon polarization density matrix and show that the phonon emitted when the intermediate exciton relaxes from excited to ground state, preserves the exciton's spin. The phonon, thus, does not carry with it any which-path information other than its energy. Nevertheless, entanglement distillation by spectral filtering was found to be rather ineffective for this cascade. This deficiency results from the opposite sign of the anisotropic electron-hole exchange interaction in the excited exciton relative to that in the ground exciton.Comment: 6 pages, 4 figure

    Optically induced rotation of a quantum dot exciton spin

    Full text link
    We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initializes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the exciton's spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter
    • …
    corecore