351 research outputs found

    “A wind of change” in recreational fisheries? Recreational fishermen and wind farms: current use and perception

    Get PDF
    Offshore wind farms create opportunities for recreational fishermen in Belgium, since the presence of hard substrates and the closure for trawling create a favorable habitat for fish. After the construction in 2008, a concentration of anglers was observed in the vicinity of the first wind farm during monitoring. In the following years, however, the interest of anglers for the wind farms seemed to disappear. To elucidate the evolution in the relation between recreational angling intensity and wind farms, this study aimed to assess how Belgian recreational fishermen perceive wind farms, how often they visit them and why, and which fish species they (expect to) catch. Data were derived from the annual DCF survey for recreational fishermen. Less than 2% of the sea anglers reported to go fishing in the larger wind farm area, even when 30 to 40 percent of the respondents either expected more fish, bigger fish or other fish species. The main reasons to stay away from wind farms is because entering the wind farms themselves is not allowed, because the distance to the wind farms is relatively large, because charter vessels do not offer fish trips to wind farms, and because wind farms are protection zones and nursery areas for fish. 40% of the respondents would consider fishing inside wind farms if it were allowed, mainly because they expect more or other fish. This is a clear indication that the enforcement of wind farm closure for fisheries and shipping is vital when aiming at the creation and/or restoration of nursing grounds in the area. However, the large distance to the wind farms will probably continue to limit fishing pressure, even if wind farms would (partly) be opened for recreational fisheries

    Survey of Saturn Z-mode Emission

    Get PDF
    Because of the role of Z-mode emission in the diffusive scattering and resonant acceleration of electrons, we conduct a survey of intensity in the Saturn inner magnetosphere. Z-mode is primarily observed as “5 kHz” narrowband emission in the lower density regions where the ratio of cyclotron to plasma frequency, fc/fp > 1 to which we limit this study. This occurs at Saturn along the inner edge of the Enceladus torus near the equator and at higher latitudes. We present profiles and parametric fits of intensity as a function of frequency, radius, latitude, and local time. The magnetic field intensity levels are lower than chorus, but the electric field intensities are comparable. We conclude that Z-mode wave-particle interactions may make a significant contribution to electron acceleration in the inner magnetosphere of Saturn, supplementing acceleration produced by chorus emission

    The Ion Composition of Saturn's Equatorial Ionosphere as Observed by Cassini

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2018 American Geophysical Union.The Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn in 2017. The Ion and Neutral Mass Spectrometer (INMS) found molecular hydrogen and helium as well as minor species including water, methane, ammonia, and organics. INMS ion mode measurements of light ion species (H+, H2+, H3+, and He+) and Radio and Plasma Wave Science instrument measurements of electron densities are presented. A photochemical analysis of the INMS and Radio and Plasma Wave Science data indicates that the major ion species near the ionospheric peak must be heavy and molecular with a short chemical lifetime. A quantitative explanation of measured H+ and H3+ densities requires that they chemically react with one or more heavy neutral molecular species that have mixing ratios of about 100 ppm

    Plasma Transport in Saturn's Low‐Latitude Ionosphere: Cassini Data

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.In 2017 the Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn. The Ion and Neutral Mass Spectrometer in its ion mode measured densities of light ion species (H+, H2+, H3+, and He+), and the Radio and Plasma Wave Science instrument measured electron densities. During proximal orbit 287 (denoted P287), Cassini reached down to an altitude of about 3,000 km above the 1 bar atmospheric pressure level. The topside ionosphere plasma densities measured for P287 were consistent with ionospheric measurements during other proximal orbits. Spacecraft potentials were measured by the Radio and Plasma Wave Science Langmuir probe and are typically about negative 0.3 V. Also, for this one orbit, Ion and Neutral Mass Spectrometer was operated in an instrument mode allowing the energies of incident H+ ions to be measured. H+ is the major ion species in the topside ionosphere. Ion flow speeds relative to Saturn's atmosphere were determined. In the southern hemisphere, including near closest approach, the measured ion speeds were close to zero relative to Saturn's corotating atmosphere, but for northern latitudes, southward ion flow of about 3 km/s was observed. One possible interpretation is that the ring shadowing of the southern hemisphere sets up an interhemispheric plasma pressure gradient driving this flow

    Electron Density Distributions in Saturn's Ionosphere

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere
    • …
    corecore