5,566 research outputs found

    Extra heads and invariant allocations

    Full text link
    Let \Pi be an ergodic simple point process on R^d and let \Pi^* be its Palm version. Thorisson [Ann. Probab. 24 (1996) 2057-2064] proved that there exists a shift coupling of \Pi and \Pi^*; that is, one can select a (random) point Y of \Pi such that translating \Pi by -Y yields a configuration whose law is that of \Pi^*. We construct shift couplings in which Y and \Pi^* are functions of \Pi, and prove that there is no shift coupling in which \Pi is a function of \Pi^*. The key ingredient is a deterministic translation-invariant rule to allocate sets of equal volume (forming a partition of R^d) to the points of \Pi. The construction is based on the Gale-Shapley stable marriage algorithm [Amer. Math. Monthly 69 (1962) 9-15]. Next, let \Gamma be an ergodic random element of {0,1}^{Z^d} and let \Gamma^* be \Gamma conditioned on \Gamma(0)=1. A shift coupling X of \Gamma and \Gamma^* is called an extra head scheme. We show that there exists an extra head scheme which is a function of \Gamma if and only if the marginal E[\Gamma(0)] is the reciprocal of an integer. When the law of \Gamma is product measure and d\geq3, we prove that there exists an extra head scheme X satisfying E\exp c\|X\|^d<\infty; this answers a question of Holroyd and Liggett [Ann. Probab. 29 (2001) 1405-1425].Comment: Published at http://dx.doi.org/10.1214/009117904000000603 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    Infinite matrices may violate the associative law

    Full text link
    The momentum operator for a particle in a box is represented by an infinite order Hermitian matrix PP. Its square P2P^2 is well defined (and diagonal), but its cube P3P^3 is ill defined, because PP2P2PP P^2\neq P^2 P. Truncating these matrices to a finite order restores the associative law, but leads to other curious results.Comment: final version in J. Phys. A28 (1995) 1765-177

    Quenched exit times for random walk on dynamical percolation

    Get PDF
    We consider random walk on dynamical percolation on the discrete torus Znd\mathbb{Z}_n^d. In previous work, mixing times of this process for p<pc(Zd)p<p_c(\mathbb{Z}^d) were obtained in the annealed setting where one averages over the dynamical percolation environment. Here we study exit times in the quenched setting, where we condition on a typical dynamical percolation environment. We obtain an upper bound for all pp which for p<pcp<p_c matches the known lower bound

    The most probable wave function of a single free moving particle

    Full text link
    We develop the most probable wave functions for a single free quantum particle given its momentum and energy by imposing its quantum probability density to maximize Shannon information entropy. We show that there is a class of solutions in which the quantum probability density is self-trapped with finite-size spatial support, uniformly moving hence keeping its form unchanged.Comment: revtex, 4 page

    Cutoff for the noisy voter model

    Get PDF
    Given a continuous time Markov Chain {q(x,y)}\{q(x,y)\} on a finite set SS, the associated noisy voter model is the continuous time Markov chain on {0,1}S\{0,1\}^S, which evolves in the following way: (1) for each two sites xx and yy in SS, the state at site xx changes to the value of the state at site yy at rate q(x,y)q(x,y); (2) each site rerandomizes its state at rate 1. We show that if there is a uniform bound on the rates {q(x,y)}\{q(x,y)\} and the corresponding stationary distributions are almost uniform, then the mixing time has a sharp cutoff at time logS/2\log|S|/2 with a window of order 1. Lubetzky and Sly proved cutoff with a window of order 1 for the stochastic Ising model on toroids; we obtain the special case of their result for the cycle as a consequence of our result. Finally, we consider the model on a star and demonstrate the surprising phenomenon that the time it takes for the chain started at all ones to become close in total variation to the chain started at all zeros is of smaller order than the mixing time.Comment: Published at http://dx.doi.org/10.1214/15-AAP1108 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Extendable self-avoiding walks

    Get PDF
    The connective constant mu of a graph is the exponential growth rate of the number of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be forward (respectively, backward) extendable if it may be extended forwards (respectively, backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be extended in both directions simultaneously to a doubly infinite self-avoiding walk. We prove that the connective constants for forward, backward, and doubly extendable self-avoiding walks, denoted respectively by mu^F, mu^B, mu^FB, exist and satisfy mu = mu^F = mu^B = mu^FB for every infinite, locally finite, strongly connected, quasi-transitive directed graph. The proofs rely on a 1967 result of Furstenberg on dimension, and involve two different arguments depending on whether or not the graph is unimodular.Comment: Accepted versio
    corecore