1,306 research outputs found

    Singular lensing from the scattering on special space-time defects

    Full text link
    It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when the scattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent ("singular lensing"). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals.Comment: 32 pages latex, three pdf figures incorporated, partial text overlap with arXiv:: arXiv:1607.0131

    Super Heavy Dark Matter Anisotropies from D-particles in the Early Universe

    Get PDF
    We discuss a way of producing anisotropies in the spectrum of superheavy Dark matter, which are due to the distortion of the inflationary space time induced by the recoil of D-particles upon their scattering with ordinary string matter in the Early Universe. We calculate such distortions by world-sheet Liouville string theory (perturbative) methods. The resulting anisotropies are found to be proportional to the average recoil velocity and density of the D-particles. In our analysis we employ a regulated version of de Sitter space, allowing for graceful exit from inflation. This guarantees the asymptotic flatness of the space time, as required for a consistent interpretation, within an effective field theory context, of the associated Bogolubov coefficients as particle number densities. The latter are computed by standard WKB methods.Comment: 30 pages Latex, two eps figures incorporate

    CPT and Quantum Mechanics Tests with Kaons

    Get PDF
    In this review we first discuss the theoretical motivations for possible CPT violation and deviations from ordinary quantum-mechanical behavior of field-theoretic systems in the context of an extended class of quantum-gravity models. Then we proceed to a description of precision tests of CPT symmetry using mainly neutral kaons. We emphasize the possibly unique role of neutral meson factories in providing specific tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we present tests of CPT, T, and CP using charged kaons, and in particular K_l4 decays, which are interesting due to the high statistics attainable in experiments.Comment: Invited contribution to DAFNE Physics Handbook, 23 pages LaTeX, 9 eps figures incorporate

    Electroweak pinch technique to all orders

    Full text link
    The generalization of the pinch technique to all orders in the electroweak sector of the Standard Model within the class of the renormalizable 't Hooft gauges, is presented. In particular, both the all-order PT gauge-boson-- and scalar--fermions vertices, as well as the diagonal and mixed gauge-boson and scalar self-energies are explicitly constructed. This is achieved through the generalization to the Standard Model of the procedure recently applied to the QCD case, which consist of two steps: (i) the identification of special Green's functions, which serve as a common kernel to all self-energy and vertex diagrams, and (ii) the study of the (on-shell) Slavnov-Taylor identities they satisfy. It is then shown that the ghost, scalar and scalar--gauge-boson Green's functions appearing in these identities capture precisely the result of the pinching action at arbitrary order. It turns out that the aforementioned Green's functions play a crucial role, their net effect being the non-trivial modification of the ghost, scalar and scalar--gauge-boson diagrams of the gauge-boson-- or scalar--fermions vertex we have started from, in such a way as to dynamically generate the characteristic ghost and scalar sector of the background field method. The pinch technique gauge-boson and scalar self-energies are also explicitly constructed by resorting to the method of the background-quantum identities.Comment: 48 pages, 8 figures; v2: typos correcte

    Breit-Wigner formalism for non-Abelian theories

    Get PDF
    The consistent description of resonant transition amplitudes within the framework of perturbative field theories necessitates the definition and resummation of off-shell Green's functions, which must respect several crucial physical requirements. In particular, the generalization of the usual Breit-Wigner formalism in a non-Abelian context constitutes a highly non-trivial problem, related to the fact that the conventionally defined Green's functions are unphysical. We briefly review the main field-theoretical difficulties arising when attempting to use such Green's functions outside the confines of a fixed order perturbative calculation, and explain how this task has been successfully accomplished in the framework of the pinch technique

    The pinch technique at two-loops: The case of mass-less Yang-Mills theories

    Get PDF
    The generalization of the pinch technique beyond one loop is presented. It is shown that the crucial physical principles of gauge-invariance, unitarity, and gauge-fixing-parameter independence single out at two loops exactly the same algorithm which has been used to define the pinch technique at one loop, without any additional assumptions. The two-loop construction of the pinch technique gluon self-energy, and quark-gluon vertex are carried out in detail for the case of mass-less Yang-Mills theories, such as perturbative QCD. We present two different but complementary derivations. First we carry out the construction by directly rearranging two-loop diagrams. The analysis reveals that, quite interestingly, the well-known one-loop correspondence between the pinch technique and the background field method in the Feynman gauge persists also at two-loops. The renormalization is discussed in detail, and is shown to respect the aforementioned correspondence. Second, we present an absorptive derivation, exploiting the unitarity of the SS-matrix and the underlying BRS symmetry; at this stage we deal only with tree-level and one-loop physical amplitudes. The gauge-invariant sub-amplitudes defined by means of this absorptive construction correspond precisely to the imaginary parts of the nn-point functions defined in the full two-loop derivation, thus furnishing a highly non-trivial self-consistency check for the entire method. Various future applications are briefly discussed.Comment: 29 pages, uses Revtex, 22 Figures in a separate ps fil

    Magnetic field-dependent interplay between incoherent and Fermi liquid transport mechanisms in low-dimensional tau phase organic conductors

    Full text link
    We present an electrical transport study of the 2-dimensional (2D) organic conductor tau-(P-(S,S)-DMEDT-TTF)_2(AuBr)_2(AuBr_2)_y (y = 0.75) at low temperatures and high magnetic fields. The inter-plane resistivity rho_zz increases with decreasing temperature, with the exception of a slight anomaly at 12 K. Under a magnetic field B, both rho_zz and the in-plane resistivity plane rho_xx show a pronounced negative and hysteretic magnetoresistance with Shubnikov de Haas (SdH)oscillations being observed in some (high quality)samples above 15 T. Contrary to the predicted single, star-shaped, closed orbit Fermi surface from band structure calculations (with an expected approximate area of 12.5% of A_FBZ), two fundamental frequencies F_l and F_h are detected in the SdH signal. These orbits correspond to 2.4% and 6.8% of the area of the first Brillouin zone(A_FBZ), with effective masses F_l = 4.0 +/- 0.5 and F_h = 7.3 +/- 0.1. The angular dependence, in tilted magnetic fields of F_l and F_h, reveals the 2D character of the FS and Angular dependent magnetoresistance (AMRO) further suggests a FS which is strictly 2-D where the inter-plane hopping t_c is virtually absent or incoherent. The Hall constant R_xy is field independent, and the Hall mobility increases by a factor of 3 under moderate magnetic fields. Our observations suggest a unique physical situation where a stable 2D Fermi liquid state in the molecular layers are incoherently coupled along the least conducting direction. The magnetic field not only reduces the inelastic scattering between the 2D metallic layers, but it also reveals the incoherent nature of interplane transport in the AMRO spectrum. The apparent ferromagnetism of the hysteretic magnetoresistance remains an unsolved problem.Comment: 33 pages, 11 figure
    • …
    corecore