131 research outputs found

    TellEat: sharing experiences on the move

    Get PDF
    In a context where, due to the proliferation of mobile devices, virtual social environments on the Web are taking up a very concrete role in the way people experience their surroundings, the Future Internet seems to be headed toward a mixture of Social Web, Semantic Web and Augmented Reality. As a part of a larger project that aims at building a social network of both people and things, we designed and developed TellEat, an iPhone-based application that allows users in mobility to share facts concerning people or objects that participate in the social network, and to discover pertinent events that have been told by others. In this paper we discuss both the client application, with the interaction model and interface metaphors that have been designed to make the experience as playful as possible for users, and the server-side services that provide the necessary knowledge and reasoning mechanisms. We also present the results of preliminary tests with users

    Gravitomagnetism in teleparallel gravity

    Full text link
    The assumption that matter charges and currents could generate fields, which are called, by analogy with electromagnetism, gravitoeletric and gravitomagnetic fields, dates from the origins of General Relativity (GR). On the other hand, the Teleparallel Equivalent of GR (TEGR), as a gauge theory, seems to be the ideal scenario to define these fields, based on the gauge field strength components. The purpose of the present work is to investigate the nature of the gravitational electric and magnetic fields in the context of the TEGR, where the tetrad formalism behind it seems to be more appropriated to deal with phenomena related to observers. As our main results, we have obtained, for the first time, the exact expressions for the gravito-electromagnetic fields for the Schwarzschild solution that in the linear approximation become the usual expected ones. To improve our understanding about these fields, we have also studied the geometry produced by a spherical rotating shell in slow motion and weak field regime. Again, the expressions obtained are in complete agreement with those of electromagnetism.Comment: 25 pages. Submitted to International Journal of Modern Physics D. Version 2: some new discussions, references adde

    Spin-2 fields and helicity

    Full text link
    By considering the irreducible representations of the Lorentz group, an analysis of the different spin-2 waves is presented. In particular, the question of the helicity is discussed. It is concluded that, although from the point of view of representation theory there are no compelling reasons to choose between spin-2 waves with helicity = + - 1 or helicity = + - 2, consistency arguments of the ensuing field theories favor waves with helicity = + - 1.Comment: 10 pages. V2: presentation changes and discussion adde

    Investigating the impact of mindfulness meditation training on working memory: A mathematical modeling approach

    Get PDF
    We investigated whether mindfulness training (MT) influences information processing in a working memory task with complex visual stimuli. Participants were tested before (T1) and after (T2) participation in an intensive one-month MT retreat, and their performance was compared with that of an age- and education-matched control group. Accuracy did not differ across groups at either time point. Response times were faster and significantly less variable in the MT versus the control group at T2. Since these results could be due to changes in mnemonic processes, speed–accuracy trade-off, or nondecisional factors (e.g., motor execution), we used a mathematical modeling approach to disentangle these factors. The EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, Psychonomic Bulletin & Review 14:(1), 3–22, 2007) suggested that MT leads to improved information quality and reduced response conservativeness, with no changes in nondecisional factors. The noisy exemplar model further suggested that the increase in information quality reflected a decrease in encoding noise and not an increase in forgetting. Thus, mathematical modeling may help clarify the mechanisms by which MT produces salutary effects on performance

    When Music and Long-Term Memory Interact: Effects of Musical Expertise on Functional and Structural Plasticity in the Hippocampus

    Get PDF
    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus
    • …
    corecore