228 research outputs found

    Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry

    Full text link
    We study both theoretically and experimentally switching dynamics in surface stabilized ferroelectric liquid crystal cells with asymmetric boundary conditions. In these cells the bounding surfaces are treated differently to produce asymmetry in their anchoring properties. Our electro-optic measurements of the switching voltage thresholds that are determined by the peaks of the reversal polarization current reveal the frequency dependent shift of the hysteresis loop. We examine the predictions of the uniform dynamical model with the anchoring energy taken into account. It is found that the asymmetry effects are dominated by the polar contribution to the anchoring energy. Frequency dependence of the voltage thresholds is studied by analyzing the properties of time-periodic solutions to the dynamical equation (cycles). For this purpose, we apply the method that uses the parameterized half-period mappings for the approximate model and relate the cycles to the fixed points of the composition of two half-period mappings. The cycles are found to be unstable and can only be formed when the driving frequency is lower than its critical value. The polar anchoring parameter is estimated by making a comparison between the results of modelling and the experimental data for the shift vs frequency curve. For a double-well potential considered as a deformation of the Rapini-Papoular potential, the branch of stable cycles emerges in the low frequency region separated by the gap from the high frequency interval for unstable cycles.Comment: 35 pages, 15 figure

    Investigations on Short Pitch Ferroelectric Liquid Crystal Mixtures

    Full text link

    Ferroelectric C* phase induced in a nematic liquid crystal matrix by a chiral non-mesogenic dopant

    Get PDF
    We report on a ferroelectric chiral smectic C (C*) phase obtained in a mixture of a nematic liquid crystal (NLC) and a chiral nonmesogenic dopant. The existence of C* phase was proven by calorimetric, dielectric and optical measurements, and also by X-rays analysis. The smectic C* which is obtained in such a way can flow, allowing to restore the ferroelectric liquid crystal layer structure in the electro-optical cells after action of the mechanical stress, as it happens with the cells filled with NLC. The proposed method of obtaining smectic C* material allows us to create innovative electro-optical cell combining the advantages of NLC (mechanical resilience) and smectic C* (high switching speed

    In-plane switching deformed helix ferroelectric liquid crystal display cell

    Get PDF
    As it is well known the principal advantages of in-plane switching (IPS) liquid crystal display cells is the colot accuracy due to the small gamma and color shifts, and since the director lies in the substrates plane, the viewing angle is large and symmetric. Together with this, the production of IPS-displays based on nematic liquid crystals is associated with the solution of rather complex technological problems caused by the need to form a grid of interdigitated electrodes.In this message, we draw attention for the first time to the fact that the IPS electro-optical switching is a natural and inherent feature of a conventional planar-oriented display cell based on the deformed helix ferroelectric liquid crystal effect (DHFLC-effect). In such a cell with continuous (and not interdigital) electrodes, the main optical axis is deflected in the plane of the substrates under the electric field E action. Measured dependence of light transmittance T(E) and calculations results can be argued that in DHFLC cell there is the IPS electro-optical mode. IPS switching operates in kilohertz frequency range providing contrast ratio more than 200:1 in monochromatic light.The paper will consider possible applications of the effect under consideration in display and photonic devices

    Electro-optical switching of the main optical axis of a ferroelectric liquid crystal spiral nanostructure in a planar-oriented display cell

    Get PDF
    В ОзĐČĐ”ŃŃ‚ĐœĐŸĐč ЎОсплДĐčĐœĐŸĐč ŃŃ‡Đ”ĐčĐșĐ” с ĐœĐ”ĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐžĐŒ жОЎĐșĐžĐŒ ĐșŃ€ĐžŃŃ‚Đ°Đ»Đ»ĐŸĐŒ (НЖК) Đž ĐČŃŃ‚Ń€Đ”Ń‡ĐœĐŸ- ŃˆŃ‚Ń‹Ń€Đ”ĐČŃ‹ĐŒĐž ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŽĐ°ĐŒĐž ĐœĐ° ĐŸĐŽĐœĐŸĐč Оз стДĐșĐ»ŃĐœĐœŃ‹Ń… ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș Ń€Đ”Đ°Đ»ĐžĐ·ŃƒĐ”Ń‚ŃŃ Ń€Đ”Đ¶ĐžĐŒ пДрДĐșĐ»ŃŽŃ‡Đ”ĐœĐžŃ «In-Plane Switching» (IPS), про ĐșĐŸŃ‚ĐŸŃ€ĐŸĐŒ глаĐČĐœĐ°Ń ĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșая ĐŸŃŃŒ НЖК ĐżĐ”Ń€Đ”ĐŸŃ€ĐžĐ”ĐœŃ‚ĐžŃ€ŃƒĐ”Ń‚ŃŃ ĐČ ĐżĐ°Ń€Đ°Đ»Đ»Đ”Đ»ŃŒĐœĐŸĐč ĐżĐŸĐŽĐ»ĐŸĐ¶ĐșĐ°ĐŒ ĐżĐ»ĐŸŃĐșĐŸŃŃ‚Đž, ĐŸĐ±Đ”ŃĐżĐ”Ń‡ĐžĐČая ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ĐșĐŸŃ€Ń€Đ”ĐșŃ‚ĐœŃƒŃŽ цĐČĐ”Ń‚ĐŸĐżĐ”Ń€Đ”ĐŽĐ°Ń‡Ńƒ про Ń€Đ°Đ·ĐœŃ‹Ń… ŃƒĐłĐ»Đ°Ń… ĐŸĐ±Đ·ĐŸŃ€Đ°, ĐČĐżĐ»ĐŸŃ‚ŃŒ ĐŽĐŸ 178 ° Đżo ĐłĐŸŃ€ĐžĐ·ĐŸĐœŃ‚Đ°Đ»Đž Đž ĐČДртОĐșалО. К ŃĐŸĐ¶Đ°Đ»Đ”ĐœĐžŃŽ, ŃĐŸĐ·ĐŽĐ°ĐœĐžĐ” ĐłŃ€Đ”Đ±Đ”ĐœĐșĐž ĐŒĐ”Ń‚Đ°Đ»Đ»ĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŽĐŸĐČ ŃƒŃĐ»ĐŸĐ¶ĐœŃĐ”Ń‚ Đž ŃƒĐŽĐŸŃ€ĐŸĐ¶Đ°Đ”Ń‚ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșĐžĐč ĐżŃ€ĐŸŃ†Đ”ŃŃ Đž ĐČŃ‹Đ·Ń‹ĐČаДт ŃƒŃ…ŃƒĐŽŃˆĐ”ĐœĐžĐ” ĐșĐŸĐœŃ‚Ń€Đ°ŃŃ‚ĐœĐŸŃŃ‚Đž ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃ. В Ń‚ĐŸ жД ĐČŃ€Đ”ĐŒŃ эĐșŃĐżĐ”Ń€ĐžĐŒĐ”ĐœŃ‚Đ°Đ»ŃŒĐœŃ‹Đ” Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ Đž расчДты, ĐŸŃĐœĐŸĐČĐ°ĐœĐœŃ‹Đ” ĐœĐ° ĐșлассОчДсĐșĐŸĐč ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŸĐżŃ‚ĐžĐșĐ” ĐșŃ€ĐžŃŃ‚Đ°Đ»Đ»ĐŸĐČ, сĐČĐžĐŽĐ”Ń‚Đ”Đ»ŃŒŃŃ‚ĐČуют, Ń‡Ń‚ĐŸ ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐ” пДрДĐșĐ»ŃŽŃ‡Đ”ĐœĐžĐ” ĐČ Ń€Đ”Đ¶ĐžĐŒĐ” IPS яĐČĐ»ŃĐ”Ń‚ŃŃ ДстДстĐČĐ”ĐœĐœĐŸĐč Đž ĐœĐ”ĐŸŃ‚ŃŠĐ”ĐŒĐ»Đ”ĐŒĐŸĐč ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃ‚ŃŒŃŽ ĐŸĐ±Ń‹Ń‡ĐœĐŸĐč (ŃĐŸ ŃĐżĐ»ĐŸŃˆĐœŃ‹ĐŒĐž ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŽĐ°ĐŒĐž) ЎОсплДĐčĐœĐŸĐč ŃŃ‡Đ”ĐčĐșĐž с ĐżĐ»Đ°ĐœĐ°Ń€ĐœĐŸ-ĐŸŃ€ĐžĐ”ĐœŃ‚ĐžŃ€ĐŸĐČĐ°ĐœĐœŃ‹ĐŒ ŃĐ»ĐŸĐ”ĐŒ ŃĐ”ĐłĐœĐ”Ń‚ĐŸŃĐ»Đ”ĐșтрОчДсĐșĐŸĐłĐŸ жОЎĐșĐŸĐłĐŸ ĐșрОсталла (СЖК), ĐČ ĐșĐŸŃ‚ĐŸŃ€ĐŸĐŒ Ń€Đ”Đ°Đ»ĐžĐ·ŃƒĐ”Ń‚ŃŃ ŃŃ„Ń„Đ”Đșт ĐŽĐ”Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐč ŃĐ»Đ”ĐșтрОчДсĐșĐžĐŒ ĐżĐŸĐ»Đ”ĐŒ ŃĐżĐžŃ€Đ°Đ»ŃŒĐœĐŸĐč ĐœĐ°ĐœĐŸŃŃ‚Ń€ŃƒĐșтуры СЖК (DHF-ŃŃ„Ń„Đ”Đșт). В таĐșĐŸĐč ŃŃ‡Đ”ĐčĐșĐ” ĐżĐ”Ń€Đ”ĐŸŃ€ĐžĐ”ĐœŃ‚Đ°Ń†ĐžŃ глаĐČĐœĐŸĐč ĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐč ĐŸŃĐž ĐżĐŸĐŽ ĐČĐŸĐ·ĐŽĐ”ĐčстĐČĐžĐ”ĐŒ ŃĐ»Đ°Đ±ĐŸĐłĐŸ ŃĐ»Đ”ĐșтрОчДсĐșĐŸĐłĐŸ ĐżĐŸĐ»Ń Ń‚ĐŸĐ¶Đ” ĐżŃ€ĐŸĐžŃŃ…ĐŸĐŽĐžŃ‚ ĐČ ĐżĐ»ĐŸŃĐșĐŸŃŃ‚Đž ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș, ДслО СЖК ĐžĐŒĐ”Đ”Ń‚ ĐŒĐ°Đ»Ń‹Đč шаг (ĐŸĐșĐŸĐ»ĐŸ 100 ĐœĐŒ Đž ĐŒĐ”ĐœĐ”Đ”) Đž Đ±ĐŸĐ»ŃŒŃˆĐŸĐč ŃƒĐłĐŸĐ» ĐœĐ°ĐșĐ»ĐŸĐœĐ° ĐŒĐŸĐ»Đ”Đșул ĐČ ŃĐ»ĐŸĐ” (ĐŸĐșĐŸĐ»ĐŸ 38 ° Đž Đ±ĐŸĐ»Đ”Đ”). Đ˜Đ·ĐŒĐ”Ń€Đ”ĐœĐœŃ‹Đ” ĐČ ĐŽĐ°ĐœĐœĐŸĐč Ń€Đ°Đ±ĐŸŃ‚Đ” Đ·Đ°ĐČĐžŃĐžĐŒĐŸŃŃ‚Đž ĐșĐŸŃŃ„Ń„ĐžŃ†ĐžĐ”ĐœŃ‚Đ° ĐżŃ€ĐŸĐżŃƒŃĐșĐ°ĐœĐžŃ сĐČДта СЖК-ŃŃ‡Đ”ĐčĐșĐŸĐč ĐżĐŸĐŽŃ‚ĐČДрЎОлО ĐŽĐŸŃŃ‚ĐžĐ¶Đ”ĐœĐžĐ” ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ Ń€Đ”Đ¶ĐžĐŒĐ° IPS ĐČ ŃŃ‡Đ”ĐčĐșĐ” DHF СЖК, ĐżŃ€ĐžŃ‡Đ”ĐŒ Ń‡Đ°ŃŃ‚ĐŸŃ‚Đ° ĐŒĐŸĐŽŃƒĐ»ŃŃ†ĐžĐž сĐČДта ŃĐŸŃŃ‚Đ°ĐČОла 1 ĐșГц. йаĐșĐžĐŒ ĐŸĐ±Ń€Đ°Đ·ĐŸĐŒ, про ŃĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžĐž ĐČсДх ĐŽĐŸŃŃ‚ĐŸĐžĐœŃŃ‚ĐČ IPS-Ń€Đ”Đ¶ĐžĐŒĐ°, ОзĐČĐ”ŃŃ‚ĐœŃ‹Ń… ĐČ ĐĐ–Đš, Ń€Đ”Đ°Đ»ĐžĐ·Đ°Ń†ĐžŃ Đ”ĐłĐŸ ĐČ ĐĄĐ–Đš ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń‚ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐżĐŸĐ»ŃƒŃ‡ĐžŃ‚ŃŒ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșОД ĐżŃ€Đ”ĐžĐŒŃƒŃ‰Đ”ŃŃ‚ĐČĐ° Đž ĐŒĐœĐŸĐłĐŸĐșŃ€Đ°Ń‚ĐœŃ‹Đč ĐČыогрыш ĐČ Ń‡Đ°ŃŃ‚ĐŸŃ‚Đ” ĐŒĐŸĐŽŃƒĐ»ŃŃ†ĐžĐž

    ЭЛЕКбРООПбИЧЕСКОЕ ПЕРЕКЛмЧЕНИЕ ГЛАВНОЙ ОПбИЧЕСКОЙ ОСИ СПИРАЛЬНОЙ ĐĐĐĐžĐĄĐąĐ ĐŁĐšĐąĐŁĐ Đ« СЕГНЕбОЭЛЕКбРИЧЕСКОГО ЖИДКОГО КРИСбАЛЛА В ПЛАНАРНО- ОРИЕНбИРОВАННОЙ ДИСПЛЕЙНОЙ ЯЧЕЙКЕ

    Get PDF
    In a known display cell with the nematic liquid crystal (NLC) and interdigital electrodes on one of the glass substrates, the “In-Plane Switching” (IPS) mode is implemented, in which the NLC main optical axis reorients in a plane parallel to substrates, providing the most correct color reproduction at different angles view, up to 178 ° horizontally and vertically. Unfortunately, the creation of interdigital metal electrodes complicates and increases the technological process cost and causes a decrease in image contrast. At the same time, experimental results and calculations based on classical electro-optics of crystals indicate that electrooptical switching in the IPS mode is a natural and intrinsic feature of a conventional (with continuous electrodes) display cell with a planar-oriented layer of the ferroelectric liquid crystal (FLC), in which the effect of the deformed (by the electric field) helix FLC nanostructure is realized (DHF effect). In such a cell, the reorientation of the main optical axis under the influence of a weak electric field also occurs in the substrate plane if the FLC has a small pitch (about 100 nm or less) and a large tilt angle of molecules in the layer (about 38 ° or more). The dependences of the FLC cell light transmittance measured in this work, confirmed the achievement of the IPS electro-optical mode in the DHF FLC cell; moreover, the light modulation frequency was 1 kHz. Thus, while maintaining all the advantages of the IPS mode known in NLC, its implementation in FLC allows additionally obtaining technological advantages and multiple increase in modulation frequency.В ОзĐČĐ”ŃŃ‚ĐœĐŸĐč ЎОсплДĐčĐœĐŸĐč ŃŃ‡Đ”ĐčĐșĐ” с ĐœĐ”ĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐžĐŒ жОЎĐșĐžĐŒ ĐșŃ€ĐžŃŃ‚Đ°Đ»Đ»ĐŸĐŒ (НЖК) Đž ĐČŃŃ‚Ń€Đ”Ń‡ĐœĐŸ- ŃˆŃ‚Ń‹Ń€Đ”ĐČŃ‹ĐŒĐž ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŽĐ°ĐŒĐž ĐœĐ° ĐŸĐŽĐœĐŸĐč Оз стДĐșĐ»ŃĐœĐœŃ‹Ń… ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș Ń€Đ”Đ°Đ»ĐžĐ·ŃƒĐ”Ń‚ŃŃ Ń€Đ”Đ¶ĐžĐŒ пДрДĐșĐ»ŃŽŃ‡Đ”ĐœĐžŃ «In-Plane Switching» (IPS), про ĐșĐŸŃ‚ĐŸŃ€ĐŸĐŒ глаĐČĐœĐ°Ń ĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșая ĐŸŃŃŒ НЖК ĐżĐ”Ń€Đ”ĐŸŃ€ĐžĐ”ĐœŃ‚ĐžŃ€ŃƒĐ”Ń‚ŃŃ ĐČ ĐżĐ°Ń€Đ°Đ»Đ»Đ”Đ»ŃŒĐœĐŸĐč ĐżĐŸĐŽĐ»ĐŸĐ¶ĐșĐ°ĐŒ ĐżĐ»ĐŸŃĐșĐŸŃŃ‚Đž, ĐŸĐ±Đ”ŃĐżĐ”Ń‡ĐžĐČая ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ĐșĐŸŃ€Ń€Đ”ĐșŃ‚ĐœŃƒŃŽ цĐČĐ”Ń‚ĐŸĐżĐ”Ń€Đ”ĐŽĐ°Ń‡Ńƒ про Ń€Đ°Đ·ĐœŃ‹Ń… ŃƒĐłĐ»Đ°Ń… ĐŸĐ±Đ·ĐŸŃ€Đ°, ĐČĐżĐ»ĐŸŃ‚ŃŒ ĐŽĐŸ 178 ° Đżo ĐłĐŸŃ€ĐžĐ·ĐŸĐœŃ‚Đ°Đ»Đž Đž ĐČДртОĐșалО. К ŃĐŸĐ¶Đ°Đ»Đ”ĐœĐžŃŽ, ŃĐŸĐ·ĐŽĐ°ĐœĐžĐ” ĐłŃ€Đ”Đ±Đ”ĐœĐșĐž ĐŒĐ”Ń‚Đ°Đ»Đ»ĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŽĐŸĐČ ŃƒŃĐ»ĐŸĐ¶ĐœŃĐ”Ń‚ Đž ŃƒĐŽĐŸŃ€ĐŸĐ¶Đ°Đ”Ń‚ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșĐžĐč ĐżŃ€ĐŸŃ†Đ”ŃŃ Đž ĐČŃ‹Đ·Ń‹ĐČаДт ŃƒŃ…ŃƒĐŽŃˆĐ”ĐœĐžĐ” ĐșĐŸĐœŃ‚Ń€Đ°ŃŃ‚ĐœĐŸŃŃ‚Đž ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃ. В Ń‚ĐŸ жД ĐČŃ€Đ”ĐŒŃ эĐșŃĐżĐ”Ń€ĐžĐŒĐ”ĐœŃ‚Đ°Đ»ŃŒĐœŃ‹Đ” Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ Đž расчДты, ĐŸŃĐœĐŸĐČĐ°ĐœĐœŃ‹Đ” ĐœĐ° ĐșлассОчДсĐșĐŸĐč ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŸĐżŃ‚ĐžĐșĐ” ĐșŃ€ĐžŃŃ‚Đ°Đ»Đ»ĐŸĐČ, сĐČĐžĐŽĐ”Ń‚Đ”Đ»ŃŒŃŃ‚ĐČуют, Ń‡Ń‚ĐŸ ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐ” пДрДĐșĐ»ŃŽŃ‡Đ”ĐœĐžĐ” ĐČ Ń€Đ”Đ¶ĐžĐŒĐ” IPS яĐČĐ»ŃĐ”Ń‚ŃŃ ДстДстĐČĐ”ĐœĐœĐŸĐč Đž ĐœĐ”ĐŸŃ‚ŃŠĐ”ĐŒĐ»Đ”ĐŒĐŸĐč ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃ‚ŃŒŃŽ ĐŸĐ±Ń‹Ń‡ĐœĐŸĐč (ŃĐŸ ŃĐżĐ»ĐŸŃˆĐœŃ‹ĐŒĐž ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŽĐ°ĐŒĐž) ЎОсплДĐčĐœĐŸĐč ŃŃ‡Đ”ĐčĐșĐž с ĐżĐ»Đ°ĐœĐ°Ń€ĐœĐŸ-ĐŸŃ€ĐžĐ”ĐœŃ‚ĐžŃ€ĐŸĐČĐ°ĐœĐœŃ‹ĐŒ ŃĐ»ĐŸĐ”ĐŒ ŃĐ”ĐłĐœĐ”Ń‚ĐŸŃĐ»Đ”ĐșтрОчДсĐșĐŸĐłĐŸ жОЎĐșĐŸĐłĐŸ ĐșрОсталла (СЖК), ĐČ ĐșĐŸŃ‚ĐŸŃ€ĐŸĐŒ Ń€Đ”Đ°Đ»ĐžĐ·ŃƒĐ”Ń‚ŃŃ ŃŃ„Ń„Đ”Đșт ĐŽĐ”Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐč ŃĐ»Đ”ĐșтрОчДсĐșĐžĐŒ ĐżĐŸĐ»Đ”ĐŒ ŃĐżĐžŃ€Đ°Đ»ŃŒĐœĐŸĐč ĐœĐ°ĐœĐŸŃŃ‚Ń€ŃƒĐșтуры СЖК (DHF-ŃŃ„Ń„Đ”Đșт). В таĐșĐŸĐč ŃŃ‡Đ”ĐčĐșĐ” ĐżĐ”Ń€Đ”ĐŸŃ€ĐžĐ”ĐœŃ‚Đ°Ń†ĐžŃ глаĐČĐœĐŸĐč ĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐč ĐŸŃĐž ĐżĐŸĐŽ ĐČĐŸĐ·ĐŽĐ”ĐčстĐČĐžĐ”ĐŒ ŃĐ»Đ°Đ±ĐŸĐłĐŸ ŃĐ»Đ”ĐșтрОчДсĐșĐŸĐłĐŸ ĐżĐŸĐ»Ń Ń‚ĐŸĐ¶Đ” ĐżŃ€ĐŸĐžŃŃ…ĐŸĐŽĐžŃ‚ ĐČ ĐżĐ»ĐŸŃĐșĐŸŃŃ‚Đž ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș, ДслО СЖК ĐžĐŒĐ”Đ”Ń‚ ĐŒĐ°Đ»Ń‹Đč шаг (ĐŸĐșĐŸĐ»ĐŸ 100 ĐœĐŒ Đž ĐŒĐ”ĐœĐ”Đ”) Đž Đ±ĐŸĐ»ŃŒŃˆĐŸĐč ŃƒĐłĐŸĐ» ĐœĐ°ĐșĐ»ĐŸĐœĐ° ĐŒĐŸĐ»Đ”Đșул ĐČ ŃĐ»ĐŸĐ” (ĐŸĐșĐŸĐ»ĐŸ 38 ° Đž Đ±ĐŸĐ»Đ”Đ”). Đ˜Đ·ĐŒĐ”Ń€Đ”ĐœĐœŃ‹Đ” ĐČ ĐŽĐ°ĐœĐœĐŸĐč Ń€Đ°Đ±ĐŸŃ‚Đ” Đ·Đ°ĐČĐžŃĐžĐŒĐŸŃŃ‚Đž ĐșĐŸŃŃ„Ń„ĐžŃ†ĐžĐ”ĐœŃ‚Đ° ĐżŃ€ĐŸĐżŃƒŃĐșĐ°ĐœĐžŃ сĐČДта СЖК-ŃŃ‡Đ”ĐčĐșĐŸĐč ĐżĐŸĐŽŃ‚ĐČДрЎОлО ĐŽĐŸŃŃ‚ĐžĐ¶Đ”ĐœĐžĐ” ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ Ń€Đ”Đ¶ĐžĐŒĐ° IPS ĐČ ŃŃ‡Đ”ĐčĐșĐ” DHF СЖК, ĐżŃ€ĐžŃ‡Đ”ĐŒ Ń‡Đ°ŃŃ‚ĐŸŃ‚Đ° ĐŒĐŸĐŽŃƒĐ»ŃŃ†ĐžĐž сĐČДта ŃĐŸŃŃ‚Đ°ĐČОла 1 ĐșГц. йаĐșĐžĐŒ ĐŸĐ±Ń€Đ°Đ·ĐŸĐŒ, про ŃĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžĐž ĐČсДх ĐŽĐŸŃŃ‚ĐŸĐžĐœŃŃ‚ĐČ IPS-Ń€Đ”Đ¶ĐžĐŒĐ°, ОзĐČĐ”ŃŃ‚ĐœŃ‹Ń… ĐČ ĐĐ–Đš, Ń€Đ”Đ°Đ»ĐžĐ·Đ°Ń†ĐžŃ Đ”ĐłĐŸ ĐČ ĐĄĐ–Đš ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń‚ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐżĐŸĐ»ŃƒŃ‡ĐžŃ‚ŃŒ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșОД ĐżŃ€Đ”ĐžĐŒŃƒŃ‰Đ”ŃŃ‚ĐČĐ° Đž ĐŒĐœĐŸĐłĐŸĐșŃ€Đ°Ń‚ĐœŃ‹Đč ĐČыогрыш ĐČ Ń‡Đ°ŃŃ‚ĐŸŃ‚Đ” ĐŒĐŸĐŽŃƒĐ»ŃŃ†ĐžĐž

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Ultrarelativistic sources in nonlinear electrodynamics

    Get PDF
    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure

    Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP

    Get PDF
    The cross section for open-beauty production in photon-photon collisions is measured using the whole high-energy and high-luminosity data sample collected by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events containing b quarks are identified through their semi-leptonic decay into electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our fiducial volume and then extrapolated to the full phase space. These results are found to be in significant excess with respect to Monte Carlo predictions and next-to-leading order QCD calculations
    • 

    corecore