228 research outputs found
Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry
We study both theoretically and experimentally switching dynamics in surface
stabilized ferroelectric liquid crystal cells with asymmetric boundary
conditions. In these cells the bounding surfaces are treated differently to
produce asymmetry in their anchoring properties. Our electro-optic measurements
of the switching voltage thresholds that are determined by the peaks of the
reversal polarization current reveal the frequency dependent shift of the
hysteresis loop. We examine the predictions of the uniform dynamical model with
the anchoring energy taken into account. It is found that the asymmetry effects
are dominated by the polar contribution to the anchoring energy. Frequency
dependence of the voltage thresholds is studied by analyzing the properties of
time-periodic solutions to the dynamical equation (cycles). For this purpose,
we apply the method that uses the parameterized half-period mappings for the
approximate model and relate the cycles to the fixed points of the composition
of two half-period mappings. The cycles are found to be unstable and can only
be formed when the driving frequency is lower than its critical value. The
polar anchoring parameter is estimated by making a comparison between the
results of modelling and the experimental data for the shift vs frequency
curve. For a double-well potential considered as a deformation of the
Rapini-Papoular potential, the branch of stable cycles emerges in the low
frequency region separated by the gap from the high frequency interval for
unstable cycles.Comment: 35 pages, 15 figure
Ferroelectric C* phase induced in a nematic liquid crystal matrix by a chiral non-mesogenic dopant
We report on a ferroelectric chiral smectic C (C*) phase obtained in a mixture of a nematic liquid
crystal (NLC) and a chiral nonmesogenic dopant. The existence of C* phase was proven by
calorimetric, dielectric and optical measurements, and also by X-rays analysis. The smectic C*
which is obtained in such a way can flow, allowing to restore the ferroelectric liquid crystal layer
structure in the electro-optical cells after action of the mechanical stress, as it happens with the cells
filled with NLC. The proposed method of obtaining smectic C* material allows us to create innovative
electro-optical cell combining the advantages of NLC (mechanical resilience) and smectic C*
(high switching speed
In-plane switching deformed helix ferroelectric liquid crystal display cell
As it is well known the principal advantages of in-plane switching (IPS) liquid crystal display cells is the colot accuracy due to the small gamma and color shifts, and since the director lies in the substrates plane, the viewing angle is large and symmetric. Together with this, the production of IPS-displays based on nematic liquid crystals is associated with the solution of rather complex technological problems caused by the need to form a grid of interdigitated electrodes.In this message, we draw attention for the first time to the fact that the IPS electro-optical switching is a natural and inherent feature of a conventional planar-oriented display cell based on the deformed helix ferroelectric liquid crystal effect (DHFLC-effect). In such a cell with continuous (and not interdigital) electrodes, the main optical axis is deflected in the plane of the substrates under the electric field E action.
Measured dependence of light transmittance T(E) and calculations results can be argued that in DHFLC cell there is the IPS electro-optical mode. IPS switching operates in kilohertz frequency range providing contrast ratio more than 200:1 in monochromatic light.The paper will consider possible applications of the effect under consideration in display and photonic
devices
Electro-optical switching of the main optical axis of a ferroelectric liquid crystal spiral nanostructure in a planar-oriented display cell
РОзĐČĐ”ŃŃĐœĐŸĐč ĐŽĐžŃплДĐčĐœĐŸĐč ŃŃĐ”ĐčĐșĐ” Ń ĐœĐ”ĐŒĐ°ŃĐžŃĐ”ŃĐșĐžĐŒ жОЎĐșĐžĐŒ ĐșŃĐžŃŃĐ°Đ»Đ»ĐŸĐŒ (ĐĐĐ) Đž ĐČŃŃŃĐ”ŃĐœĐŸ-
ŃŃŃŃĐ”ĐČŃĐŒĐž ŃлДĐșŃŃĐŸĐŽĐ°ĐŒĐž ĐœĐ° ĐŸĐŽĐœĐŸĐč Оз ŃŃĐ”ĐșĐ»ŃĐœĐœŃŃ
ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș ŃДалОзŃĐ”ŃŃŃ ŃĐ”Đ¶ĐžĐŒ пДŃĐ”ĐșĐ»ŃŃĐ”ĐœĐžŃ
«In-Plane Switching» (IPS), ĐżŃĐž ĐșĐŸŃĐŸŃĐŸĐŒ глаĐČĐœĐ°Ń ĐŸĐżŃĐžŃĐ”ŃĐșĐ°Ń ĐŸŃŃ ĐĐРпДŃĐ”ĐŸŃĐžĐ”ĐœŃĐžŃŃĐ”ŃŃŃ ĐČ ĐżĐ°ŃаллДлŃĐœĐŸĐč
ĐżĐŸĐŽĐ»ĐŸĐ¶ĐșĐ°ĐŒ ĐżĐ»ĐŸŃĐșĐŸŃŃĐž, ĐŸĐ±Đ”ŃпДŃĐžĐČĐ°Ń ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ĐșĐŸŃŃĐ”ĐșŃĐœŃŃ ŃĐČĐ”ŃĐŸĐżĐ”ŃДЎаŃŃ ĐżŃĐž ŃĐ°Đ·ĐœŃŃ
ŃглаŃ
ĐŸĐ±Đ·ĐŸŃĐ°,
ĐČĐżĐ»ĐŸŃŃ ĐŽĐŸ 178 ° Đżo ĐłĐŸŃĐžĐ·ĐŸĐœŃалО Đž ĐČĐ”ŃŃĐžĐșалО. Đ ŃĐŸĐ¶Đ°Đ»Đ”ĐœĐžŃ, ŃĐŸĐ·ĐŽĐ°ĐœĐžĐ” ĐłŃĐ”Đ±Đ”ĐœĐșĐž ĐŒĐ”ŃаллОŃĐ”ŃĐșĐžŃ
ŃлДĐșŃŃĐŸĐŽĐŸĐČ ŃŃĐ»ĐŸĐ¶ĐœŃĐ”Ń Đž ŃĐŽĐŸŃĐŸĐ¶Đ°Đ”Ń ŃĐ”Ń
ĐœĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐžĐč ĐżŃĐŸŃĐ”ŃŃ Đž ĐČŃĐ·ŃĐČĐ°Đ”Ń ŃŃ
ŃĐŽŃĐ”ĐœĐžĐ” ĐșĐŸĐœŃŃĐ°ŃŃĐœĐŸŃŃĐž ĐžĐ·ĐŸĐ±ŃĐ°Đ¶Đ”ĐœĐžŃ. Đ ŃĐŸ жД ĐČŃĐ”ĐŒŃ ŃĐșŃпДŃĐžĐŒĐ”ĐœŃĐ°Đ»ŃĐœŃĐ” ŃДзŃĐ»ŃŃĐ°ŃŃ Đž ŃĐ°ŃŃĐ”ŃŃ, ĐŸŃĐœĐŸĐČĐ°ĐœĐœŃĐ” ĐœĐ° ĐșлаŃŃĐžŃĐ”ŃĐșĐŸĐč ŃлДĐșŃŃĐŸĐŸĐżŃĐžĐșĐ” ĐșŃĐžŃŃĐ°Đ»Đ»ĐŸĐČ, ŃĐČОЎДŃДлŃŃŃĐČŃŃŃ, ŃŃĐŸ ŃлДĐșŃŃĐŸĐŸĐżŃĐžŃĐ”ŃĐșĐŸĐ” пДŃĐ”ĐșĐ»ŃŃĐ”ĐœĐžĐ” ĐČ ŃĐ”Đ¶ĐžĐŒĐ” IPS ŃĐČĐ»ŃĐ”ŃŃŃ Đ”ŃŃĐ”ŃŃĐČĐ”ĐœĐœĐŸĐč Đž ĐœĐ”ĐŸŃŃĐ”ĐŒĐ»Đ”ĐŒĐŸĐč ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃŃŃ ĐŸĐ±ŃŃĐœĐŸĐč (ŃĐŸ ŃĐżĐ»ĐŸŃĐœŃĐŒĐž ŃлДĐșŃŃĐŸĐŽĐ°ĐŒĐž) ĐŽĐžŃплДĐčĐœĐŸĐč ŃŃĐ”ĐčĐșĐž Ń ĐżĐ»Đ°ĐœĐ°ŃĐœĐŸ-ĐŸŃĐžĐ”ĐœŃĐžŃĐŸĐČĐ°ĐœĐœŃĐŒ ŃĐ»ĐŸĐ”ĐŒ ŃĐ”ĐłĐœĐ”ŃĐŸŃлДĐșŃŃĐžŃĐ”ŃĐșĐŸĐłĐŸ жОЎĐșĐŸĐłĐŸ ĐșŃĐžŃŃалла (ĐĄĐĐ), ĐČ ĐșĐŸŃĐŸŃĐŸĐŒ ŃДалОзŃĐ”ŃŃŃ ŃŃŃĐ”ĐșŃ ĐŽĐ”ŃĐŸŃĐŒĐžŃĐŸĐČĐ°ĐœĐœĐŸĐč ŃлДĐșŃŃĐžŃĐ”ŃĐșĐžĐŒ ĐżĐŸĐ»Đ”ĐŒ ŃпОŃĐ°Đ»ŃĐœĐŸĐč ĐœĐ°ĐœĐŸŃŃŃŃĐșŃŃŃŃ ĐĄĐĐ (DHF-ŃŃŃĐ”ĐșŃ). Đ ŃĐ°ĐșĐŸĐč ŃŃĐ”ĐčĐșĐ” пДŃĐ”ĐŸŃĐžĐ”ĐœŃĐ°ŃĐžŃ ĐłĐ»Đ°ĐČĐœĐŸĐč ĐŸĐżŃĐžŃĐ”ŃĐșĐŸĐč ĐŸŃĐž ĐżĐŸĐŽ ĐČĐŸĐ·ĐŽĐ”ĐčŃŃĐČĐžĐ”ĐŒ ŃĐ»Đ°Đ±ĐŸĐłĐŸ ŃлДĐșŃŃĐžŃĐ”ŃĐșĐŸĐłĐŸ ĐżĐŸĐ»Ń ŃĐŸĐ¶Đ” ĐżŃĐŸĐžŃŃ
ĐŸĐŽĐžŃ ĐČ ĐżĐ»ĐŸŃĐșĐŸŃŃĐž ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș, Đ”ŃлО ĐĄĐĐ ĐžĐŒĐ”Đ”Ń ĐŒĐ°Đ»ŃĐč ŃĐ°Đł (ĐŸĐșĐŸĐ»ĐŸ 100 ĐœĐŒ Đž ĐŒĐ”ĐœĐ”Đ”) Đž Đ±ĐŸĐ»ŃŃĐŸĐč ŃĐłĐŸĐ» ĐœĐ°ĐșĐ»ĐŸĐœĐ° ĐŒĐŸĐ»Đ”ĐșŃĐ» ĐČ ŃĐ»ĐŸĐ” (ĐŸĐșĐŸĐ»ĐŸ 38 ° Đž Đ±ĐŸĐ»Đ”Đ”). ĐĐ·ĐŒĐ”ŃĐ”ĐœĐœŃĐ” ĐČ ĐŽĐ°ĐœĐœĐŸĐč ŃĐ°Đ±ĐŸŃĐ” Đ·Đ°ĐČĐžŃĐžĐŒĐŸŃŃĐž ĐșĐŸŃŃŃĐžŃĐžĐ”ĐœŃĐ° ĐżŃĐŸĐżŃŃĐșĐ°ĐœĐžŃ ŃĐČĐ”ŃĐ° ĐĄĐĐ-ŃŃĐ”ĐčĐșĐŸĐč ĐżĐŸĐŽŃĐČĐ”ŃЎОлО ĐŽĐŸŃŃĐžĐ¶Đ”ĐœĐžĐ” ŃлДĐșŃŃĐŸĐŸĐżŃĐžŃĐ”ŃĐșĐŸĐłĐŸ ŃĐ”Đ¶ĐžĐŒĐ° IPS ĐČ ŃŃĐ”ĐčĐșĐ” DHF ĐĄĐĐ, ĐżŃĐžŃĐ”ĐŒ ŃĐ°ŃŃĐŸŃĐ° ĐŒĐŸĐŽŃĐ»ŃŃОО ŃĐČĐ”ŃĐ° ŃĐŸŃŃĐ°ĐČОла 1 ĐșĐŃ. йаĐșĐžĐŒ ĐŸĐ±ŃĐ°Đ·ĐŸĐŒ, ĐżŃĐž ŃĐŸŃ
ŃĐ°ĐœĐ”ĐœĐžĐž ĐČŃĐ”Ń
ĐŽĐŸŃŃĐŸĐžĐœŃŃĐČ IPS-ŃĐ”Đ¶ĐžĐŒĐ°, ОзĐČĐ”ŃŃĐœŃŃ
ĐČ ĐĐĐ, ŃДалОзаŃĐžŃ Đ”ĐłĐŸ ĐČ ĐĄĐĐ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń ĐŽĐŸĐżĐŸĐ»ĐœĐžŃДлŃĐœĐŸ ĐżĐŸĐ»ŃŃĐžŃŃ ŃĐ”Ń
ĐœĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșОД ĐżŃĐ”ĐžĐŒŃŃĐ”ŃŃĐČĐ° Đž ĐŒĐœĐŸĐłĐŸĐșŃĐ°ŃĐœŃĐč ĐČŃОгŃŃŃ ĐČ ŃĐ°ŃŃĐŸŃĐ” ĐŒĐŸĐŽŃĐ»ŃŃОО
ĐĐĐĐйРĐĐĐĐąĐЧĐĐĄĐĐĐ ĐĐĐ ĐĐĐПЧĐĐĐĐ ĐĐĐĐĐĐĐ ĐĐĐąĐЧĐĐĄĐĐĐ ĐĐĄĐ ĐĄĐĐĐ ĐĐĐŹĐĐĐ ĐĐĐĐХйРУĐйУРЫ ĐĄĐĐĐĐĐąĐĐĐĐĐйРĐЧĐĐĄĐĐĐĐ ĐĐĐĐĐĐĐ ĐĐ ĐĐĄĐąĐĐĐĐ Đ ĐĐĐĐĐĐ ĐĐ- ĐĐ ĐĐĐĐąĐĐ ĐĐĐĐĐĐĐ ĐĐĐĄĐĐĐĐĐĐРЯЧĐĐĐĐ
In a known display cell with the nematic liquid crystal (NLC) and interdigital electrodes on one of the glass substrates, the âIn-Plane Switchingâ (IPS) mode is implemented, in which the NLC main optical axis reorients in a plane parallel to substrates, providing the most correct color reproduction at different angles view, up to 178 ° horizontally and vertically. Unfortunately, the creation of interdigital metal electrodes complicates and increases the technological process cost and causes a decrease in image contrast. At the same time, experimental results and calculations based on classical electro-optics of crystals indicate that electrooptical switching in the IPS mode is a natural and intrinsic feature of a conventional (with continuous electrodes) display cell with a planar-oriented layer of the ferroelectric liquid crystal (FLC), in which the effect of the deformed (by the electric field) helix FLC nanostructure is realized (DHF effect). In such a cell, the reorientation of the main optical axis under the influence of a weak electric field also occurs in the substrate plane if the FLC has a small pitch (about 100 nm or less) and a large tilt angle of molecules in the layer (about 38 ° or more). The dependences of the FLC cell light transmittance measured in this work, confirmed the achievement of the IPS electro-optical mode in the DHF FLC cell; moreover, the light modulation frequency was 1 kHz. Thus, while maintaining all the advantages of the IPS mode known in NLC, its implementation in FLC allows additionally obtaining technological advantages and multiple increase in modulation frequency.РОзĐČĐ”ŃŃĐœĐŸĐč ĐŽĐžŃплДĐčĐœĐŸĐč ŃŃĐ”ĐčĐșĐ” Ń ĐœĐ”ĐŒĐ°ŃĐžŃĐ”ŃĐșĐžĐŒ жОЎĐșĐžĐŒ ĐșŃĐžŃŃĐ°Đ»Đ»ĐŸĐŒ (ĐĐĐ) Đž ĐČŃŃŃĐ”ŃĐœĐŸ- ŃŃŃŃĐ”ĐČŃĐŒĐž ŃлДĐșŃŃĐŸĐŽĐ°ĐŒĐž ĐœĐ° ĐŸĐŽĐœĐŸĐč Оз ŃŃĐ”ĐșĐ»ŃĐœĐœŃŃ
ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș ŃДалОзŃĐ”ŃŃŃ ŃĐ”Đ¶ĐžĐŒ пДŃĐ”ĐșĐ»ŃŃĐ”ĐœĐžŃ Â«In-Plane Switching» (IPS), ĐżŃĐž ĐșĐŸŃĐŸŃĐŸĐŒ глаĐČĐœĐ°Ń ĐŸĐżŃĐžŃĐ”ŃĐșĐ°Ń ĐŸŃŃ ĐĐРпДŃĐ”ĐŸŃĐžĐ”ĐœŃĐžŃŃĐ”ŃŃŃ ĐČ ĐżĐ°ŃаллДлŃĐœĐŸĐč ĐżĐŸĐŽĐ»ĐŸĐ¶ĐșĐ°ĐŒ ĐżĐ»ĐŸŃĐșĐŸŃŃĐž, ĐŸĐ±Đ”ŃпДŃĐžĐČĐ°Ń ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ĐșĐŸŃŃĐ”ĐșŃĐœŃŃ ŃĐČĐ”ŃĐŸĐżĐ”ŃДЎаŃŃ ĐżŃĐž ŃĐ°Đ·ĐœŃŃ
ŃглаŃ
ĐŸĐ±Đ·ĐŸŃĐ°, ĐČĐżĐ»ĐŸŃŃ ĐŽĐŸ 178 ° Đżo ĐłĐŸŃĐžĐ·ĐŸĐœŃалО Đž ĐČĐ”ŃŃĐžĐșалО. Đ ŃĐŸĐ¶Đ°Đ»Đ”ĐœĐžŃ, ŃĐŸĐ·ĐŽĐ°ĐœĐžĐ” ĐłŃĐ”Đ±Đ”ĐœĐșĐž ĐŒĐ”ŃаллОŃĐ”ŃĐșĐžŃ
ŃлДĐșŃŃĐŸĐŽĐŸĐČ ŃŃĐ»ĐŸĐ¶ĐœŃĐ”Ń Đž ŃĐŽĐŸŃĐŸĐ¶Đ°Đ”Ń ŃĐ”Ń
ĐœĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐžĐč ĐżŃĐŸŃĐ”ŃŃ Đž ĐČŃĐ·ŃĐČĐ°Đ”Ń ŃŃ
ŃĐŽŃĐ”ĐœĐžĐ” ĐșĐŸĐœŃŃĐ°ŃŃĐœĐŸŃŃĐž ĐžĐ·ĐŸĐ±ŃĐ°Đ¶Đ”ĐœĐžŃ. Đ ŃĐŸ жД ĐČŃĐ”ĐŒŃ ŃĐșŃпДŃĐžĐŒĐ”ĐœŃĐ°Đ»ŃĐœŃĐ” ŃДзŃĐ»ŃŃĐ°ŃŃ Đž ŃĐ°ŃŃĐ”ŃŃ, ĐŸŃĐœĐŸĐČĐ°ĐœĐœŃĐ” ĐœĐ° ĐșлаŃŃĐžŃĐ”ŃĐșĐŸĐč ŃлДĐșŃŃĐŸĐŸĐżŃĐžĐșĐ” ĐșŃĐžŃŃĐ°Đ»Đ»ĐŸĐČ, ŃĐČОЎДŃДлŃŃŃĐČŃŃŃ, ŃŃĐŸ ŃлДĐșŃŃĐŸĐŸĐżŃĐžŃĐ”ŃĐșĐŸĐ” пДŃĐ”ĐșĐ»ŃŃĐ”ĐœĐžĐ” ĐČ ŃĐ”Đ¶ĐžĐŒĐ” IPS ŃĐČĐ»ŃĐ”ŃŃŃ Đ”ŃŃĐ”ŃŃĐČĐ”ĐœĐœĐŸĐč Đž ĐœĐ”ĐŸŃŃĐ”ĐŒĐ»Đ”ĐŒĐŸĐč ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃŃŃ ĐŸĐ±ŃŃĐœĐŸĐč (ŃĐŸ ŃĐżĐ»ĐŸŃĐœŃĐŒĐž ŃлДĐșŃŃĐŸĐŽĐ°ĐŒĐž) ĐŽĐžŃплДĐčĐœĐŸĐč ŃŃĐ”ĐčĐșĐž Ń ĐżĐ»Đ°ĐœĐ°ŃĐœĐŸ-ĐŸŃĐžĐ”ĐœŃĐžŃĐŸĐČĐ°ĐœĐœŃĐŒ ŃĐ»ĐŸĐ”ĐŒ ŃĐ”ĐłĐœĐ”ŃĐŸŃлДĐșŃŃĐžŃĐ”ŃĐșĐŸĐłĐŸ жОЎĐșĐŸĐłĐŸ ĐșŃĐžŃŃалла (ĐĄĐĐ), ĐČ ĐșĐŸŃĐŸŃĐŸĐŒ ŃДалОзŃĐ”ŃŃŃ ŃŃŃĐ”ĐșŃ ĐŽĐ”ŃĐŸŃĐŒĐžŃĐŸĐČĐ°ĐœĐœĐŸĐč ŃлДĐșŃŃĐžŃĐ”ŃĐșĐžĐŒ ĐżĐŸĐ»Đ”ĐŒ ŃпОŃĐ°Đ»ŃĐœĐŸĐč ĐœĐ°ĐœĐŸŃŃŃŃĐșŃŃŃŃ ĐĄĐĐ (DHF-ŃŃŃĐ”ĐșŃ). Đ ŃĐ°ĐșĐŸĐč ŃŃĐ”ĐčĐșĐ” пДŃĐ”ĐŸŃĐžĐ”ĐœŃĐ°ŃĐžŃ ĐłĐ»Đ°ĐČĐœĐŸĐč ĐŸĐżŃĐžŃĐ”ŃĐșĐŸĐč ĐŸŃĐž ĐżĐŸĐŽ ĐČĐŸĐ·ĐŽĐ”ĐčŃŃĐČĐžĐ”ĐŒ ŃĐ»Đ°Đ±ĐŸĐłĐŸ ŃлДĐșŃŃĐžŃĐ”ŃĐșĐŸĐłĐŸ ĐżĐŸĐ»Ń ŃĐŸĐ¶Đ” ĐżŃĐŸĐžŃŃ
ĐŸĐŽĐžŃ ĐČ ĐżĐ»ĐŸŃĐșĐŸŃŃĐž ĐżĐŸĐŽĐ»ĐŸĐ¶Đ”Đș, Đ”ŃлО ĐĄĐĐ ĐžĐŒĐ”Đ”Ń ĐŒĐ°Đ»ŃĐč ŃĐ°Đł (ĐŸĐșĐŸĐ»ĐŸ 100 ĐœĐŒ Đž ĐŒĐ”ĐœĐ”Đ”) Đž Đ±ĐŸĐ»ŃŃĐŸĐč ŃĐłĐŸĐ» ĐœĐ°ĐșĐ»ĐŸĐœĐ° ĐŒĐŸĐ»Đ”ĐșŃĐ» ĐČ ŃĐ»ĐŸĐ” (ĐŸĐșĐŸĐ»ĐŸ 38 ° Đž Đ±ĐŸĐ»Đ”Đ”). ĐĐ·ĐŒĐ”ŃĐ”ĐœĐœŃĐ” ĐČ ĐŽĐ°ĐœĐœĐŸĐč ŃĐ°Đ±ĐŸŃĐ” Đ·Đ°ĐČĐžŃĐžĐŒĐŸŃŃĐž ĐșĐŸŃŃŃĐžŃĐžĐ”ĐœŃĐ° ĐżŃĐŸĐżŃŃĐșĐ°ĐœĐžŃ ŃĐČĐ”ŃĐ° ĐĄĐĐ-ŃŃĐ”ĐčĐșĐŸĐč ĐżĐŸĐŽŃĐČĐ”ŃЎОлО ĐŽĐŸŃŃĐžĐ¶Đ”ĐœĐžĐ” ŃлДĐșŃŃĐŸĐŸĐżŃĐžŃĐ”ŃĐșĐŸĐłĐŸ ŃĐ”Đ¶ĐžĐŒĐ° IPS ĐČ ŃŃĐ”ĐčĐșĐ” DHF ĐĄĐĐ, ĐżŃĐžŃĐ”ĐŒ ŃĐ°ŃŃĐŸŃĐ° ĐŒĐŸĐŽŃĐ»ŃŃОО ŃĐČĐ”ŃĐ° ŃĐŸŃŃĐ°ĐČОла 1 ĐșĐŃ. йаĐșĐžĐŒ ĐŸĐ±ŃĐ°Đ·ĐŸĐŒ, ĐżŃĐž ŃĐŸŃ
ŃĐ°ĐœĐ”ĐœĐžĐž ĐČŃĐ”Ń
ĐŽĐŸŃŃĐŸĐžĐœŃŃĐČ IPS-ŃĐ”Đ¶ĐžĐŒĐ°, ОзĐČĐ”ŃŃĐœŃŃ
ĐČ ĐĐĐ, ŃДалОзаŃĐžŃ Đ”ĐłĐŸ ĐČ ĐĄĐĐ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń ĐŽĐŸĐżĐŸĐ»ĐœĐžŃДлŃĐœĐŸ ĐżĐŸĐ»ŃŃĐžŃŃ ŃĐ”Ń
ĐœĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșОД ĐżŃĐ”ĐžĐŒŃŃĐ”ŃŃĐČĐ° Đž ĐŒĐœĐŸĐłĐŸĐșŃĐ°ŃĐœŃĐč ĐČŃОгŃŃŃ ĐČ ŃĐ°ŃŃĐŸŃĐ” ĐŒĐŸĐŽŃĐ»ŃŃОО
Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP
Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are
used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~
events. Spin correlations are favoured by data, and found to agree with the
Standard Model predictions. In addition, correlations between the W-boson decay
planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events.
Decay-plane correlations, consistent with zero and with the Standard Model
predictions, are measured
Ultrarelativistic sources in nonlinear electrodynamics
The fields of rapidly moving sources are studied within nonlinear
electrodynamics by boosting the fields of sources at rest. As a consequence of
the ultrarelativistic limit the delta-like electromagnetic shock waves are
found. The character of the field within the shock depends on the theory of
nonlinear electrodynamics considered. In particular, we obtain the field of an
ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure
Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP
The cross section for open-beauty production in photon-photon collisions is
measured using the whole high-energy and high-luminosity data sample collected
by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity
for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events
containing b quarks are identified through their semi-leptonic decay into
electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our
fiducial volume and then extrapolated to the full phase space. These results
are found to be in significant excess with respect to Monte Carlo predictions
and next-to-leading order QCD calculations
- âŠ