1,254 research outputs found
Statistical mechanics of scale-free networks at a critical point: Complexity without irreversibility?
Based on a rigorous extension of classical statistical mechanics to networks,
we study a specific microscopic network Hamiltonian. The form of this
Hamiltonian is derived from the assumption that individual nodes
increase/decrease their utility by linking to nodes with a higher/lower degree
than their own. We interpret utility as an equivalent to energy in physical
systems and discuss the temperature dependence of the emerging networks. We
observe the existence of a critical temperature where total energy
(utility) and network-architecture undergo radical changes. Along this
topological transition we obtain scale-free networks with complex hierarchical
topology. In contrast to models for scale-free networks introduced so far, the
scale-free nature emerges within equilibrium, with a clearly defined
microcanonical ensemble and the principle of detailed balance strictly
fulfilled. This provides clear evidence that 'complex' networks may arise
without irreversibility. The results presented here should find a wide variety
of applications in socio-economic statistical systems.Comment: 4 pages, 5 figure
The Mars observer camera
A camera designed to operate under the extreme constraints of the Mars Observer Mission was selected by NASA in April, 1986. Contingent upon final confirmation in mid-November, the Mars Observer Camera (MOC) will begin acquiring images of the surface and atmosphere of Mars in September-October 1991. The MOC incorporates both a wide angle system for low resolution global monitoring and intermediate resolution regional targeting, and a narrow angle system for high resolution selective surveys. Camera electronics provide control of image clocking and on-board, internal editing and buffering to match whatever spacecraft data system capabilities are allocated to the experiment. The objectives of the MOC experiment follow
Mars Observer Camera
The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km × 2.8 km to 2.8 km × 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 × 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes. The MOC wide-angle cameras are capable of viewing Mars from horizon to horizon and are designed for low-resolution global and intermediate resolution regional studies. Low-resolution observations can be made every orbit, so that in a single 24-hour period a complete global picture of the planet can be assembled at a resolution of at least 7.5 km/pixel. Regional areas (covering hundreds of kilometers on a side) may be photographed at a resolution of better than 250 m/pixel at the nadir. Such images will be particularly useful in studying time-variable features such as lee clouds, the polar cap edge, and wind streaks, as well as acquiring stereoscopic coverage of areas of geological interest. The limb can be imaged at a vertical and along-track resolution of better than 1.5 km. Different color filters within the two wide-angle cameras permit color images of the surface and atmosphere to be made to distinguish between clouds and the ground and between clouds of different composition
Mars Observer Camera
The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km × 2.8 km to 2.8 km × 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 × 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes. The MOC wide-angle cameras are capable of viewing Mars from horizon to horizon and are designed for low-resolution global and intermediate resolution regional studies. Low-resolution observations can be made every orbit, so that in a single 24-hour period a complete global picture of the planet can be assembled at a resolution of at least 7.5 km/pixel. Regional areas (covering hundreds of kilometers on a side) may be photographed at a resolution of better than 250 m/pixel at the nadir. Such images will be particularly useful in studying time-variable features such as lee clouds, the polar cap edge, and wind streaks, as well as acquiring stereoscopic coverage of areas of geological interest. The limb can be imaged at a vertical and along-track resolution of better than 1.5 km. Different color filters within the two wide-angle cameras permit color images of the surface and atmosphere to be made to distinguish between clouds and the ground and between clouds of different composition
Earth imaging results from Galileo's second encounter
The recent flyby of the Galileo spacecraft en route to Jupiter contributes a unique perspective to our view of our home planet. Imaging activities conducted during the second Earth encounter provide an important opportunity to assess new methods and approaches on familiar territory. These include unique multispectral observations, low light-level imaging (searches for aurorae, lightning and artificial lights on the nightside) and experiments with multiple exposure times to extend the effective radiometric resolution and dynamic range of the camera system. Galileo imaging data has the potential to make important contributions to terrestrial remote sensing. This is because the particular set of filters included in the Solid State Imaging system are not presently incorporated in any currently operating Earth-orbiting sensor system. The visible/near-infrared bandpasses of the SSI filters are well suited to remote sensing of geological, glaciological, botanical, and meteorological phenomena. Data from this and the previous Earth encounter may provide an extremely valuable reference point in time for comparison with similar data expected from EOS or other systems in the future, contributing directly to our knowledge of global change. The highest resolution imaging (0.2 km/pixel) during the December, 1992 encounter occurred over the central Andes; a five filter mosaic of visible and near infrared bands displays the remarkable spectral heterogeneity of this geologically diverse region. As Galileo departed the Earth, cooperative imaging with the Near Infrared Mapping Spectrometer (NIMS) instrument targeted Antarctica, Australia, and Indonesia at 1.0 to 2.5 km/pixel resolutions in the early morning local times near the terminator. The Antarctic data are of particular interest, potentially allowing ice grain size mapping using the 889 and 968 nm filters and providing an important means of calibrating the technique for application to the Galilean satellites. As the spacecraft receded further, regional scale imaging provided data which, along with data from the previous encounter, will enable the production of global multispectral mosaics of Earth in each of the SSI filters
Dynamics of Jupiter’s atmosphere
Giant planet atmospheres provided many of the surprises and remarkable discoveries of planetary exploration during the past few decades. Studying Jupiter's atmosphere and comparing it with Earth's gives us critical insight and a broad understanding of how atmospheres work that could not be obtained by studying Earth alone
Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback
We model the plume "splashback" phase of the SL9 collisions with Jupiter
using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray
radiative transport, and we present validation tests. We couple the infalling
mass and momentum fluxes of SL9 plume material (from paper I) to a jovian
atmospheric model. A strong and complex shock structure results. The modeled
shock temperatures agree well with observations, and the structure and
evolution of the modeled shocks account for the appearance of high excitation
molecular line emission after the peak of the continuum light curve. The
splashback region cools by radial expansion as well as by radiation. The
morphology of our synthetic continuum light curves agree with observations over
a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume
is a shell of mass at the highest velocities, which we term the "vanguard".
Portions of the vanguard ejected on shallow trajectories produce a lateral
shock front, whose initial expansion accounts for the "third precursors" seen
in the 2-micron light curves of the larger impacts, and for hot methane
emission at early times. Continued propagation of this lateral shock
approximately reproduces the radii, propagation speed, and centroid positions
of the large rings observed at 3-4 microns by McGregor et al. The portion of
the vanguard ejected closer to the vertical falls back with high z-component
velocities just after maximum light, producing CO emission and the "flare" seen
at 0.9 microns. The model also produces secondary maxima ("bounces") whose
amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J.
latex, version including full figures at:
http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g
Morphology and time variability of Io's visible aurora
Clear-filter imaging of Io during the Galileo nominal and extended missions recorded diffuse auroral emissions in 16 distinct observations taken during 14 separate eclipses over a two year period. These images show that the morphology and time variability of the visible aurora have several similarities to Io's far ultraviolet emissions. The orbital leading hemisphere of Io is consistently brighter than the trailing hemisphere, probably due to a greater concentration of torus electrons in the wake region of the satellite. The locations of the polar limb glow and the bright equatorial glows appear to correlate with Io's System III longitude. Unlike the far ultraviolet emissions, the visible aurorae are enhanced near actively venting volcanic plumes, probably because of molecular emission by SO_2
- …