61 research outputs found
Spin-dependent electrical transport in ion-beam sputter deposited Fe-Cr multilayers
The temperature dependence of the electrical resistivity and
magnetoresistance of Xe-ion beam sputtered Fe-Cr multilayers has been
investigated. The electrical resistivity between 5 and 300 K in the fully
ferromagnetic state, obtained by applying a field beyond the saturation field
(H_sat) necessary for the antiferromagnetic(AF)-ferromagnetic(FM) field-induced
transition, shows evidence of spin-disorder resistivity as in crystalline Fe
and an s-d scattering contribution (as in 3d metals and alloys). The sublattice
magnetization m(T) in these multilayers has been calculated in terms of the
planar and interlayer exchange energies. The additional spin-dependent
scattering \Delta \rho (T) = \rho(T,H=0)_AF - \rho(T,H=H_sat)_FM in the AF
state over a wide range of temperature is found to be proportional to the
sublattice magnetization, both \Delta \rho(T) and m(T) reducing along with the
antiferromagnetic fraction. At intermediate fields, the spin-dependent part of
the electrical resistivity (\rho_s (T)) fits well to the power law \rho_s (T) =
b - cT^\alpha where c is a constant and b and \alpha are functions of H. At low
fields \alpha \approx 2 and the intercept b decreases with H much the same way
as the decrease of \Delta \rho (T) with T. A phase diagram (T vs. H_sat) is
obtained for the field- induced AF to FM transition. Comparisons are made
between the present investigation and similar studies using dc magnetron
sputtered and molecular beam epitaxy (MBE) grown Fe-Cr multilayers.Comment: 8 pages, 10 figures, to appear in Phys. Rev.
Electronic structure of wurtzite and zinc-blende AlN
The electronic structure of AlN in wurtzite and zinc-blende phases is studied
experimentally and theoretically. By using x-ray emission spectroscopy, the Al
3p, Al 3s and N 2p spectral densities are obtained. The corresponding local and
partial theoretical densities of states (DOS), as well as the total DOS and the
band structure, are calculated by using the full potential linearized augmented
plane wave method, within the framework of the density functional theory. There
is a relatively good agreement between the experimental spectra and the
theoretical DOS, showing a large hybridization of the valence states all along
the valence band. The discrepancies between the experimental and theoretical
DOS, appearing towards the high binding energies, are ascribed to an
underestimation of the valence band width in the calculations. Differences
between the wurtzite and zinc-blende phases are small and reflect the slight
variations between the atomic arrangements of both phases
Maximally-localized Wannier functions for entangled energy bands
We present a method for obtaining well-localized Wannier-like functions (WFs)
for energy bands that are attached to or mixed with other bands. The present
scheme removes the limitation of the usual maximally-localized WFs method (N.
Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)) that the bands of
interest should form an isolated group, separated by gaps from higher and lower
bands everywhere in the Brillouin zone. An energy window encompassing N bands
of interest is specified by the user, and the algorithm then proceeds to
disentangle these from the remaining bands inside the window by filtering out
an optimally connected N-dimensional subspace. This is achieved by minimizing a
functional that measures the subspace dispersion across the Brillouin zone. The
maximally-localized WFs for the optimal subspace are then obtained via the
algorithm of Marzari and Vanderbilt. The method, which functions as a
postprocessing step using the output of conventional electronic-structure
codes, is applied to the s and d bands of copper, and to the valence and
low-lying conduction bands of silicon. For the low-lying nearly-free-electron
bands of copper we find WFs which are centered at the tetrahedral interstitial
sites, suggesting an alternative tight-binding parametrization.Comment: 13 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macro
Maximally-localized generalized Wannier functions for composite energy bands
We discuss a method for determining the optimally-localized set of
generalized Wannier functions associated with a set of Bloch bands in a
crystalline solid. By ``generalized Wannier functions'' we mean a set of
localized orthonormal orbitals spanning the same space as the specified set of
Bloch bands. Although we minimize a functional that represents the total spread
sum_n [ _n - _n^2 ] of the Wannier functions in real space, our method
proceeds directly from the Bloch functions as represented on a mesh of
k-points, and carries out the minimization in a space of unitary matrices
U_mn^k describing the rotation among the Bloch bands at each k-point. The
method is thus suitable for use in connection with conventional
electronic-structure codes. The procedure also returns the total electric
polarization as well as the location of each Wannier center. Sample results for
Si, GaAs, molecular C2H4, and LiCl will be presented.Comment: 22 pages, two-column style with 4 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_wan
The electronic structure of LiFeAs and NaFeAs probed by resonant inelastic x-ray scattering spectra
Results of resonant inelastic X-ray scattering (RIXS) measurements at Fe
L-edges and electronic structure calculations of LiFeAs and NaFeAs are
presented. Both experiment and theory show that in the vicinity of the Fermi
energy, the density of states is dominated by contributions from Fe 3d-states.
The comparison of Fe L2,3 non-resonant and resonant (excited at L2-threshold)
X-ray emission spectra with spectra of LaOFeAs and CaFe2As2 show a great
similarity in energy and I(L2)/I(L3) intensity ratio. The I(L2)/I(L3) intensity
ratio of all FeAs-based superconductors is found to be more similar to metallic
Fe than to correlated FeO. Basing on these measurements we conclude that
iron-based superconductors are weakly or moderately correlated systems.Comment: 11 pages, 6 figure
Syngas Production, Storage, Compression and Use in Gas Turbines
This chapter analyses syngas production through pyrolysis and gasification, its compression and its use in gas turbines. Syngas compression can be performed during or after thermal treatment processes. Important points are discussed related to syngas ignition, syngas explosion limit at high temperatures and high pressures and syngas combustion kinetics. Kinetic aspects influence ignition and final emissions which are obtained at the completion of the combustion process. The chapter is organized into four subsections, dealing with (1) innovative syngas production plants, (2) syngas compressors and compression process, (3) syngas ignition in both heterogeneous and homogeneous systems and (4) syngas combustion kinetics and experimental methods. Particular attention is given to ignition regions that affect the kinetics, namely systems that operate at temperatures higher than 1000 K can have strong ignition, whereas those operating at lower temperatures have weak ignition. Keywords: Pyrogas Pyrolysis Ignition Syngas Compression GasificationacceptedVersio
- …