403 research outputs found

    Dynamical Belyi maps

    Full text link
    We study the dynamical properties of a large class of rational maps with exactly three ramification points. By constructing families of such maps, we obtain infinitely many conservative maps of degree dd; this answers a question of Silverman. Rather precise results on the reduction of these maps yield strong information on the rational dynamics.Comment: 21 page

    Can one see the fundamental frequency of a drum?

    Full text link
    We establish two-sided estimates for the fundamental frequency (the lowest eigenvalue) of the Laplacian in an open subset G of R^n with the Dirichlet boundary condition. This is done in terms of the interior capacitary radius of G which is defined as the maximal possible radius of a ball B which has a negligible intersection with the complement of G. Here negligibility of a subset F in B means that the Wiener capacity of F does not exceed gamma times the capacity of B, where gamma is an arbitrarily fixed constant between 0 and 1. We provide explicit values of constants in the two-sided estimates.Comment: 18 pages, some misprints correcte

    Minimal surfaces bounded by elastic lines

    Full text link
    In mathematics, the classical Plateau problem consists of finding the surface of least area that spans a given rigid boundary curve. A physical realization of the problem is obtained by dipping a stiff wire frame of some given shape in soapy water and then removing it; the shape of the spanning soap film is a solution to the Plateau problem. But what happens if a soap film spans a loop of inextensible but flexible wire? We consider this simple query that couples Plateau's problem to Euler's Elastica: a special class of twist-free curves of given length that minimize their total squared curvature energy. The natural marriage of two of the oldest geometrical problems linking physics and mathematics leads to a quest for the shape of a minimal surface bounded by an elastic line: the Euler-Plateau problem. We use a combination of simple physical experiments with soap films that span soft filaments, scaling concepts, exact and asymptotic analysis combined with numerical simulations to explore some of the richness of the shapes that result. Our study raises questions of intrinsic interest in geometry and its natural links to a range of disciplines including materials science, polymer physics, architecture and even art.Comment: 14 pages, 4 figures. Supplementary on-line material: http://www.seas.harvard.edu/softmat/Euler-Plateau-problem

    Aspects of Large N Gauge Theory Dynamics as Seen by String Theory

    Get PDF
    In this paper we explore some of the features of large N supersymmetric and nonsupersymmetric gauge theories using Maldacena's duality conjectures. We shall show that the resulting strong coupling behavior of the gauge theories is consistent with our qualitative expectations of these theories. Some of these consistency checks are highly nontrivial and give additional evidence for the validity of the proposed dualities.Comment: 31 pages, LaTeX, 11 eps figures, typos correcte

    Higher order Jordan Osserman Pseudo-Riemannian manifolds

    Full text link
    We study the higher order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r,s) for certain values of (r,s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher order Osserman manifolds

    On Uniqueness of Boundary Blow-up Solutions of a Class of Nonlinear Elliptic Equations

    Full text link
    We study boundary blow-up solutions of semilinear elliptic equations Lu=u+pLu=u_+^p with p>1p>1, or Lu=eauLu=e^{au} with a>0a>0, where LL is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.Comment: To appear in Comm. Partial Differential Equations; 10 page

    Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds

    Full text link
    Let s be at least 2. We construct Ricci flat pseudo-Riemannian manifolds of signature (2s,s) which are not locally homogeneous but whose curvature tensors never the less exhibit a number of important symmetry properties. They are curvature homogeneous; their curvature tensor is modeled on that of a local symmetric space. They are spacelike Jordan Osserman with a Jacobi operator which is nilpotent of order 3; they are not timelike Jordan Osserman. They are k-spacelike higher order Jordan Osserman for 2≤k≤s2\le k\le s; they are k-timelike higher order Jordan Osserman for s+2≤k≤2ss+2\le k\le 2s, and they are not k timelike higher order Jordan Osserman for 2≤s≤s+12\le s\le s+1.Comment: Update bibliography, fix minor misprint

    Surfaces immersed in su(N+1) Lie algebras obtained from the CP^N sigma models

    Full text link
    We study some geometrical aspects of two dimensional orientable surfaces arrising from the study of CP^N sigma models. To this aim we employ an identification of R^(N(N+2)) with the Lie algebra su(N+1) by means of which we construct a generalized Weierstrass formula for immersion of such surfaces. The structural elements of the surface like its moving frame, the Gauss-Weingarten and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of the CP^N model defining it. Further, the first and second fundamental forms, the Gaussian curvature, the mean curvature vector, the Willmore functional and the topological charge of surfaces are expressed in terms of this solution. We present detailed implementation of these results for surfaces immersed in su(2) and su(3) Lie algebras.Comment: 32 pages, 1 figure; changes: major revision of presentation, clarifications adde

    Curvature properties of Ď•\phi-null Osserman Lorentzian S\mathcal{S}-manifolds

    Full text link
    We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S\mathcal{S}-manifold MM and the Jacobi operators with respect to particular spacelike unit vectors on MM. We study the number of the eigenvalues of such operators in a Ď•\phi-null Osserman Lorentzian S\mathcal{S}-manifold, under suitable assumptions on the dimension of the manifold. Then, we generalize a curvature characterization, previously obtained by the first author for Lorentzian Ď•\phi-null Osserman S\mathcal{S}-manifolds with exactly two characteristic vector fields, to the case of those with an arbitrary number of characteristic vector fields.Comment: 15 pages; signs corrected on page 8, reference adde
    • …
    corecore