3,728 research outputs found
Binary nucleation in acidâwater systems. I. Methanesulfonic acidâwater
Experimental measurements of binary nucleation between methanesulfonic acid and water vapor were carried out for relative acidities (Ra), 0.05<Ra<0.65, and relative humidities (Rh), 0.06<Rh<0.65, using a continuous flow mixing-type device. The number concentration of particles leaving the nucleation and growth tube was measured as a function of the initial relative humidity and the relative acidity in the temperature range from 20 to 30 °C. Particle size distributions were also measured and found to vary with the amount of water and acid present. The system was simulated to predict the total number of particles and the total mass of acid in the aerosol phase using a simple integral model and classical binary nucleation theory allowing for the formation of acidâwater hydrates in the gas phase. At low particle concentrations, condensation rates did not significantly change the saturation levels and the nucleation rates were estimated from the total number concentration data as functions of Ra, Rh, and temperature. The values of experimental and theoretical nucleation rates differed significantly, with Jexpt/Jtheor changing as a function of temperature from 10^â8 to 10^â4 as temperature varied from 20 to 30 °C. This work represents the first systematic experimental study of the temperature dependence of binary nucleation
Binary nucleation in acidâwater systems. II. Sulfuric acidâwater and a comparison with methanesulfonic acidâwater
This work presents a systematic investigation of binary nucleation rates for sulfuric acid and water and the effect of temperature on these rates at isothermal, subsaturated conditions. The results from nucleation rate measurements for the sulfuric acid (H2SO4)âwater system are discussed and compared to those previously presented for methanesulfonic acid (MSA)âwater [B. E. Wyslouzil, J. H. Seinfeld, R. C. Flagan, and K. Okuyama, J. Chem. Phys. (submitted)]. Experiments were conducted at relative humidities (Rh) ranging from 0.006<Rh<0.65, relative acidities (Ra) in the range of 0.04<Ra<0.46, and at three temperatures, T=20, 25, and 30 °C, in the continuous flow mixing-type apparatus described in Paper I. Particles were formed by binary nucleation and grew by condensation as the mixed stream flowed through an isothermal glass tube. Number concentrations observed at the exit of the nucleation and growth tube as a function of Rh and Ra are extremely sensitive to the binary nucleation rate, and from these data the nucleation rate was estimated as a function of saturation level and temperature. Particle size distributions were also measured using a specially constructed differential mobility analyzer. As anticipated, the H2SO4 particles formed by nucleation and growth are much smaller than those formed in the MSAâwater experiments, but particle size distribution measurements confirm that most of the particles formed are being observed. The ratio of experimental to theoretical nucleation rates, Jexpt/Jtheor, was found to be a strong function of the predicted number of acid molecules in the critical nucleus for both the H2SO4âwater and MSAâwater systems
Optical Aharonov-Bohm Effect on Wigner Molecules in Type-II Semiconductor Quantum Dots
We theoretically examine the magnetoluminescence from a trion and a biexciton
in a type-II semiconductor quantum dot, in which holes are confined inside the
quantum dot and electrons are in a ring-shaped region surrounding the quantum
dot. First, we show that two electrons in the trion and biexciton are strongly
correlated to each other, forming a Wigner molecule: Since the relative motion
of electrons is frozen, they behave as a composite particle whose mass and
charge are twice those of a single electron. As a result, the energy of the
trion and biexciton oscillates as a function of magnetic field with half the
period of the single-electron Aharonov-Bohm oscillation. Next, we evaluate the
photoluminescence. Both the peak position and peak height change
discontinuously at the transition of the many-body ground state, implying a
possible observation of the Wigner molecule by the optical experiment.Comment: 10 pages, 10 figures, accepted for publication in Phys. Rev.
Open String Star as a Continuous Moyal Product
We establish that the open string star product in the zero momentum sector
can be described as a continuous tensor product of mutually commuting two
dimensional Moyal star products. Let the continuous variable parametrize the eigenvalues of the Neumann matrices; then the
noncommutativity parameter is given by .
For each , the Moyal coordinates are a linear combination of even
position modes, and the Fourier transform of a linear combination of odd
position modes. The commuting coordinate at is identified as the
momentum carried by half the string. We discuss the relation to Bars' work, and
attempt to write the string field action as a noncommutative field theory.Comment: 30 pages, LaTeX. One reference adde
Zeeman Spectroscopy of the Star Algebra
We solve the problem of finding all eigenvalues and eigenvectors of the
Neumann matrix of the matter sector of open bosonic string field theory,
including the zero modes, and switching on a background B-field. We give the
discrete eigenvalues as roots of transcendental equations, and we give
analytical expressions for all the eigenvectors.Comment: (1, 25) pages, 2 Figure
D1-D5 on ALE Space
We construct a two-dimensional N=(0,4) quiver gauge theory on D1-brane
probing D5-branes on ALE space, and study its IR behavior. This can be thought
of as a gauged linear sigma model for the NS5-branes on ALE space.Comment: 17 pages, 1 figure, lanlmac; v2: reference adde
New Gauged Linear Sigma Models for 8D HyperKahler Manifolds and Calabi-Yau Crystals
We propose two kinds of gauged linear sigma models whose moduli spaces are
real eight-dimensional hyperKahler and Calabi-Yau manifolds, respectively.
Here, hyperKahler manifolds have sp(2) holonomy in general and are dual to Type
IIB (p,q)5-brane configurations. On the other hand, Calabi-Yau fourfolds are
toric varieties expressed as quotient spaces. Our model involving fourfolds is
different from the usual one which is directly related to a symplectic quotient
procedure. Remarkable features in newly-found three-dimensional
Chern-Simons-matter theories appear here as well, such as dynamical
Fayet-Iliopoulos parameters, one dualized photon and its residual discrete
gauge symmetry.Comment: 20 pages, 1 figure; v2: minor changes and references added; v3:
statements improved, newer than JHEP versio
Witten's Vertex Made Simple
The infinite matrices in Witten's vertex are easy to diagonalize. It just
requires some SL(2,R) lore plus a Watson-Sommerfeld transformation. We
calculate the eigenvalues of all Neumann matrices for all scale dimensions s,
both for matter and ghosts, including fractional s which we use to regulate the
difficult s=0 limit. We find that s=1 eigenfunctions just acquire a p term, and
x gets replaced by the midpoint position.Comment: 24 pages, 2 figures, RevTeX style, typos correcte
- âŠ