271 research outputs found
A comparative study of the D0 neural-network analysis of the top quark non-leptonic decay channel
A simpler neural-network approach is presented for the analysis of the top
quark non-leptonic decay channel in events of the D0 Collaboration. Results for
the top quark signal are comparable to those found by the D0 Collaboration by a
more elaborate handling of the event information used as input to the neural
network.Comment: 5 pages, 1 figur
Interannual variability of winter precipitation in the European Alps: relations with the North Atlantic Oscillation.
Abstract. The European Alps rely on winter precipitation for various needs in terms of hydropower and other water uses. Major European rivers originate from the Alps and depend on winter precipitation and the consequent spring snow melt for their summer base flows. Understanding the fluctuations in winter rainfall in this region is crucially important to the study of changes in hydrologic regime in river basins, as well as to the management of their water resources. Despite the recognized relevance of winter precipitation to the water resources of the Alps and surrounding regions, the magnitude and mechanistic explanation of interannual precipitation variability in the Alpine region remains unclear and poorly investigated. Here we use gridded precipitation data from the CRU TS 1.2 to study the interannual variability of winter alpine precipitation. We found that the Alps are the region with the highest interannual variability in winter precipitation in Europe. This variability cannot be explained by large scale climate patterns such as the Arctic Oscillation (AO), North Atlantic Oscillation (NAO) or the East Atlantic/West Russia (EA/WR), even though regions below and above the Alps demonstrate connections with these patterns. Significant trends were detected only in small regions located in the Eastern part of the Alps
The assembly of massive galaxies from NIR observations of the Hubble Deep Field South
We use a deep K(AB)<25 galaxy sample in the Hubble Deep Field South to trace
the evolution of the cosmological stellar mass density from z~ 0.5 to z~3. We
find clear evidence for a decrease of the average stellar mass density at high
redshift, 2<z<3.2, that is 15^{+25}_{-5}% of the local value, two times higher
than what observed in the Hubble Deep Field North. To take into account for the
selection effects, we define a homogeneous subsample of galaxies with
10^{10}M_\odot \leq M_* \leq 10^{11}M_\odot: in this sample, the mass density
at z>2 is 20^{+20}_{-5} % of the local value. In the mass--limited subsample at
z>2, the fraction of passively fading galaxies is at most 25%, although they
can contribute up to about 40% of the stellar mass density. On the other hand,
star--forming galaxies at z>2 form stars with an average specific rate at least
~4 x10^{-10} yr, 3 times higher than the z<~1 value. This
implies that UV bright star--forming galaxies are substancial contributors to
the rise of the stellar mass density with cosmic time. Although these results
are globally consistent with --CDM scenarios, the present rendition of
semi analytic models fails to match the stellar mass density produced by more
massive galaxies present at z>2.Comment: Accepted for publication on ApJLetter
The evolution of the galaxy luminosity function in the rest frame blue band up to z=3.5
We present an estimate of the cosmological evolution of the field galaxy
luminosity function (LF) in the rest frame 4400 Angstrom B -band up to redshift
z=3.5. To this purpose, we use a composite sample of 1541 I--selected galaxies
selected down to I_(AB)=27.2 and 138 galaxies selected down to K_(AB)=25 from
ground-based and HST multicolor surveys, most notably the new deep JHK images
in the Hubble Deep Field South (HDF-S) taken with the ISAAC instrument at the
ESO-VLT telescope. About 21% of the sample has spectroscopic redshifts, and the
remaining fraction well calibrated photometric redshifts. The resulting blue LF
shows little density evolution at the faint end with respect to the local
values, while at the bright end (M_B(AB)<-20) a brightening increasing with
redshift is apparent with respect to the local LF. Hierarchical CDM models
overpredict the number of faint galaxies by about a factor 3 at z=1. At the
bright end the predicted LFs are in reasonable agreement only at low and
intermediate redshifts (z=1), but fail to reproduce the pronounced brightening
observed in the high redshift (z=2-3) LF. This brightening could mark the epoch
where a major star formation activity is present in the galaxy evolution.Comment: 14 pages, 2 figures, Astrophysical Journal Letters, in pres
Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA
We performed a kinematical analysis of the [CII] line emission of the BR
1202-0725 system at z~4,7 using ALMA observations. The most prominent sources
of this system are a quasar and a submillimeter galaxy, separated by a
projected distance of about 24 kpc and characterized by very high SFR, higher
than 1000 Msun/yr. However, the ALMA observations reveal that these galaxies
apparently have undisturbed rotating disks, which is at variance with the
commonly accepted scenario in which strong star formation activity is induced
by a major merger. We also detected faint components which, after spectral
deblending, were spatially resolved from the main QSO and SMG emissions. The
relative velocities and positions of these components are compatible with
orbital motions within the gravitational potentials generated by the QSO host
galaxy and the SMG, suggesting that they are smaller galaxies in interaction or
gas clouds in accretion flows of tidal streams. We did not find any clear
spectral evidence for outflows caused by AGN or stellar feedback. This suggests
that the high star formation rates might be induced by interactions or minor
mergers with these companions, which do not affect the large-scale kinematics
of the disks, however. Our kinematical analysis also indicates that the QSO and
the SMG have similar Mdyn, mostly in the form of molecular gas, and that the
QSO host galaxy and the SMG are seen close to face-on with slightly different
disk inclinations: the QSO host galaxy is seen almost face-on (i~15), while the
SMG is seen at higher inclinations (i~25). Finally, the ratio between the black
hole mass of the QSO, obtained from XShooter spectroscopy, and the Mdyn of the
host galaxy is similar to value found in very massive local galaxies,
suggesting that the evolution of black hole galaxy relations is probably better
studied with dynamical than with stellar host galaxy masses.Comment: Accepted for publication in Astronomy and Astrophysic
Fluctuations and Entropy Indices of QCD Parton Showers
The branching processes in parton showers are studied in perturbative QCD for
both quark and gluon jets. The emphasis is on the nature of fluctuations of
both the parton multiplicities and the spatial patterns of the final states.
Effective measures of such fluctuations are calculated from the data obtained
by Monte Carlo simulations. The entropy indices are used to characterize
chaoticity. Both running and fixed couplings are considered. The fixed coupling
case is used to study the onset of chaos. Implications of the results are
discussed.Comment: 8 pages, LaTex, 12 figures in a single postscript file, submitted to
Phys. Rev. D. Hard copy sent upon request to [email protected]
Calculating Dilepton Rates from Monte Carlo Simulations of Parton Production
To calculate dilepton rates in a Monte Carlo simulation of ultrarelativistic
heavy ion collisions, one usually scales the number of similar QCD processes by
a ratio of the corresponding differential probabilities. We derive the formula
for such a ratio especially for dilepton bremsstrahlung processes. We also
discuss the non-triviality of including higher order corrections to direct
Drell-Yan process. The resultant mass spectra from our Monte Carlo simulation
are consistent with the semi-analytical calculation using dilepton
fragmentation functions.Comment: 14 pages in RevTex, 3 figures in uuencoded files, LBL-3466
Isoscalar resonances with J^{PC}=1^{--} in e^+e^-annihilation
The analysis of the vector isoscalar excitations in the energy range between
1 and 2 GeV of the annihilation is presented for the final states
, , , and
. The effects of both the resonance mixing and the
successive opening of multiparticle channels, with the energy dependent partial
widths, are taken into account. The work extends our previous analysis
hep-ph/9609216 of the vector isovector excitations and is aimed to compare the
existing data with the predictions of the model. It is shown that
this hypothesis does not contradict the data.Comment: 16 pages, revtex, 6 ps figures. Clarifying remarks, a table, and
references are added. Accepted in Phys. Rev.
- …