5,199 research outputs found

    Broadband optical gain via interference in the free electron laser: principles and proposed realizations

    Get PDF
    We propose experimentally simplified schemes of an optically dispersive interface region between two coupled free electron lasers (FELs), aimed at achieving a much broader gain bandwidth than in a conventional FEL or a conventional optical klystron composed of two separated FELs. The proposed schemes can {\it universally} enhance the gain of FELs, regardless of their design when operated in the short pulsed regime

    Multipartite entanglement in the 1-D spin-12\frac{1}{2} Heisenberg Antiferromagnet

    Full text link
    Multipartite entanglement refers to the simultaneous entanglement between multiple subsystems of a many-body quantum system. While multipartite entanglement can be difficult to quantify analytically, it is known that it can be witnessed through the Quantum Fisher information (QFI), a quantity that can also be related to dynamical Kubo response functions. In this work, we first show that the finite temperature QFI can generally be expressed in terms of a static structure factor of the system, plus a correction that vanishes as T0T\rightarrow 0. We argue that this implies that the static structure factor witnesses multipartite entanglement near quantum critical points at temperatures below a characteristic energy scale that is determined by universal properties, up to a non-universal amplitude. Therefore, in systems with a known static structure factor, we can deduce finite temperature scaling of multipartite entanglement and low temperature entanglement depth without knowledge of the full dynamical response function of the system. This is particularly useful to study 1D quantum critical systems in which sub-power-law divergences can dominate entanglement growth, where the conventional scaling theory of the QFI breaks down. The 1D spin-12\frac{1}{2} antiferromagnetic Heisenberg model is an important example of such a system, and we show that multipartite entanglement in the Heisenberg chain diverges non-trivially as log(1/T)3/2\sim \log(1/T)^{3/2}. We verify these predictions with calculations of the QFI using conformal field theory and matrix product state simulations. Finally we discuss the implications of our results for experiments to probe entanglement in quantum materials, comparing to neutron scattering data in KCuF3_3, a material well-described by the Heisenberg chain.Comment: 8 pages and 3 figures; 1 page and 1 figure of the appendix; typos corrected; references adde

    Hole-hole superconducting pairing in the t-J model induced by spin-wave exchange

    Full text link
    We study numerically the hole pairing induced by spin-wave exchange. The contact hole-hole interaction is taken into account as well. It is assumed that antiferromagnetic order is preserved at all scales relevant to pairing. The strongest pairing is obtained for the d-wave symmetry of the gap. Dependence of the value of the gap on hole concentration and temperature is presented. For the critical temperature we obtain Tc about 100 K at the hole concentration delta = 0.2-0.3.Comment: replaced with a revised version to appear in PRB, 6 pages, REVTeX 3.0, figures not change

    Normal Fermi Liquid Behavior of Quasiholes in the Spin-Polaron Model for Copper Oxides

    Full text link
    Based on the t-J model and the self-consistent Born approximation, the damping of quasiparticle hole states near the Fermi surface is calculated in a low doping regime. Renormalization of spin-wave excitations due to hole doping is taken into account. The damping is shown to be described by a familiar form ImΣ(k,ϵ)(ϵ2/ϵF)ln(ϵ/ϵF)\text{Im}\Sigma({\bf k}^{\prime},\epsilon)\propto (\epsilon^{2}/ \epsilon_{F})\ln(\epsilon/ \epsilon_{F}) characteristic of the 2-dimensional Fermi liquid, in contrast with the earlier statement reported by Li and Gong [Phys. Rev. B {\bf 51}, 6343 (1995)] on the marginal Fermi liquid behavior of quasiholes

    Hole-Hole Contact Interaction in the t-J Model

    Full text link
    Using an analytical variational approach we calculate the hole-hole contact interaction on the N\'{e}el background. Solution of the Bethe-Salpeter equation with this interaction gives bound states in dd- and p-waves with binding energies close to those obtained by numerical methods. At t/J23t/J \ge 2-3 the bound state disappears. In conclusion we discuss the relation between short range and long range interactions and analogy with the problem of pion condensation in nuclear matter.Comment: 11 pp. (LATEX), 7 figures (PostScript) appended, report N

    Pressure-Induced Magnetic Quantum Phase Transitions from Gapped Ground State in TlCuCl3

    Full text link
    Magnetization maesurements under hydrostatic pressure were performed on an S=1/2 coupled spin system TlCuCl3 with a gapped ground state under magnetic field H parallel to the [2,0,1] direction. With increasing applied pressure P, the gap decreases and closes completely at Pc=0.42 kbar. For P>Pc, TlCuCl3 undergoes antiferromagnetic ordering. A spin-flop transition was observed at Hsf=0.7T. The spin-flop field is approximately independent of pressure, although the sublattice magnetization increases with pressure. The gap and Neel temperature are presented as function is attributed to to the relative enhancement of the interdimer exchange interactions compared with the intradimer exchange interaction.Comment: 4pages,3figures To be published in J. Phys. Soc. Jpn. Vol.73 No.1

    Ethical Decision Making and Leadership Stress

    Get PDF
    The theme of this entry is how ethical decisionmaking is influenced by leadership stress. From a traditional point of view, stress is seen as a potential threat to leaders’ ethical decisions (Selart and Johansen 2011). There is substantial evidence suggesting that stress has a negative impact on leaders’ cognition and information processing, leading to errors and biases in their decisionmaking. However, it must be pointed out that in many types of professions (e.g., chief pilots, chief surgeons, and chief fire officers) leaders are more or less bound to develop advanced levels of stresstolerance in order to function ethically. This implies that stress does not always have to result in unethical decisions among leaders (Klein 1996). The structure of this entry is organized such that its first part is devoted to clarification of the relationship between ethical decision-making and leadership, while the second part is focused on how stress adds to this relationship

    Ehrenfest relations and magnetoelastic effects in field-induced ordered phases

    Full text link
    Magnetoelastic properties in field-induced magnetic ordered phases are studied theoretically based on a Ginzburg-Landau theory. A critical field for the field-induced ordered phase is obtained as a function of temperature and pressure, which determine the phase diagram. It is found that magnetic field dependence of elastic constant decreases discontinuously at the critical field, Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We found an Ehrenfest relation between the field dependence of the elastic constant and the pressure dependence of critical field. Our theory provides the theoretical form for magnetoelastic properties in field- and pressure-induced ordered phases.Comment: 7 pages, 3 figure

    Hole concentration and phonon renormalization in Ca-doped YBa_2Cu_3O_y (6.76 < y < 7.00)

    Full text link
    In order to access the overdoped regime of the YBa_2Cu_3O_y phase diagram, 2% Ca is substituted for Y in YBa_2Cu_3O_y (y = 7.00,6.93,6.88,6.76). Raman scattering studies have been carried out on these four single crystals. Measurements of the superconductivity-induced renormalization in frequency (Delta \omega) and linewidth (\Delta 2\gamma) of the 340 cm^{-1} B_{1g} phonon demonstrate that the magnitude of the renormalization is directly related to the hole concentration (p), and not simply the oxygen content. The changes in \Delta \omega with p imply that the superconducting gap (\Delta_{max}) decreases monotonically with increasing hole concentration in the overdoped regime, and \Delta \omega falls to zero in the underdoped regime. The linewidth renormalization \Delta 2\gamma is negative in the underdoped regime, crossing over at optimal doping to a positive value in the overdoped state.Comment: 18 pages; 5 figures; submitted to Phys. Rev. B Oct. 24, 2002 (BX8292
    corecore