41 research outputs found

    Prostaglandin D2-supplemented “functional eicosanoid testing and typing” assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study

    Get PDF
    Background: Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. Methods: Using the “functional eicosanoid testing and typing” (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. Results: We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14–2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. Conclusions: The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD

    The association between Darier disease, bipolar disorder, and schizophrenia revisited: a population-based family study

    No full text
    Objectives Darier disease is an autosomal dominant skin disorder caused by mutations in the ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 (ATP2A2) gene and previously reported to cosegregate with bipolar disorder and schizophrenia in occasional pedigrees. It is, however, unknown whether these associations exist also in the general population, and the objective of this study was to examine this question. Methods We compared a national sample of individuals with Darier disease and their first-degree relatives with matched unexposed individuals from the general population and their first-degree relatives, respectively. To examine risks for bipolar disorder and schizophrenia, risk ratios and 95% confidence intervals (CIs) were estimated using conditional logistic regressions. Results Individuals with Darier disease had a 4.3 times higher risk of being diagnosed with bipolar disorder (95% CI: 2.6–7.3) and a 2.3 times higher risk of being diagnosed with schizophrenia (95% CI: 1.1–5.2) than matched individuals from the general population. Relatives of individuals with Darier disease had a 1.6 times higher risk of having bipolar disorder (95% CI: 1.1–2.5) than relatives of matched individuals from the general population, but no increased risk of schizophrenia (risk ratio = 0.8, 95% CI: 0.4–1.8). Conclusions The association between Darier disease and bipolar disorder is manifest also in the population, and our data suggest that genetic variability within the ATP2A2 gene that causes Darier disease also confers susceptibility for bipolar disorder. The Darier-causing mutations merit additional attention in molecular genetic research on bipolar disorder

    Cytometric and electron microscopic studies of the direct interaction of divalent nickel with intact and chemically modified HuT-78 lymphoblasts

    No full text
    Cytometric and ultrastructural studies on 24 hr cultures of intact, 1.0 mM H5IO6, and 0.1 mM SeO2-oxidized HuT-78 lymphoblasts were performed after their direct, 30 min interaction with 1.0 mM NiCl2. Except for moderately depressed cell viability, divalent nickel did not alter the progression of intact and oxidized target cells through the phases of the cell cycle. Although the plasma membrane remained structurally intact, marked distortion of mitochondria structure and increased osmiophilia were an invariable attribute of all nickel-pulsed cells. Moreover, numerous electron-opaque, intracellular depositions were detected in SeO2-oxidized, nickel-pulsed cells. It is concluded that the initial state of plasma membrane, and the interaction of nickel with other trace elements, have jointly determined the response of HuT-78 cells to brief and direct, divalent nickel pulses
    corecore