715 research outputs found

    Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    Full text link
    Using an extension of the Nagaev model of phase separation (E.L. Nagaev, and A.I. Podel'shchikov, Sov. Phys. JETP, 71 (1990) 1108), we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both, wide-band semiconductors and 'double-exchange' materials, are investigated.Comment: 5 pages, 6 figures, RevTex, Accepted for publication in PR

    Large nonzero-moment magnetic strings in antiferromagnetic crystals of the manganite type

    Full text link
    The magnetic strings in antiferromagnetic crystals with the spin S=1/2S = 1 /2 differ from the magnetic polarons (ferrons) by the absence of the additional magnetic moment. We show that in the S>1/2S > 1 /2 double exchange crystals with the antiferromagnetic sds-d exchange, a new type of magnetic strings appears, which possesses a magnetic moment. It is concentrated at the center of the string, and the magnetized string is, in its essence, the state intermediate between the string and the ferron. In antiferromagnetic manganites, this moment is by an order of magnitude larger than that of a magnetic atom. Unlike the conventional ferrons, the magnetization of the strings exists at any parameters of the crystals under consideration. We argue that this new type of magnetic state can be relevant to some doped antiferromagnets including manganites.Comment: 7 pages, 1 eps figure, RevTeX, submitted to Phys. Rev.

    Semiclassical noise beyond the second cumulant

    Full text link
    We show how the semiclassical Langevin method can be extended to calculations of higher-than-second cumulants of noise. These cumulants are affected by indirect correlations between the fluctuations, which may be considered as "noise of noise." We formulate simple diagrammatic rules for calculating the higher cumulants and apply them to mesoscopic diffusive contacts and chaotic cavities. As one of the application of the method, we analyze the frequency dependence of the third cumulant of current in these systems and show that it contains additional peculiarities as compared to the second cumulant. The effects of environmental feedback in measurements of the third cumulant are also discussed in terms of this method

    Magnetic polarons in doped 1D antiferromagnetic chain

    Full text link
    The structure of magnetic polarons (ferrons) is studied for an 1D antiferromagnetic chain doped by non-magnetic donor impurities. The conduction electrons are assumed to be bound by the impurities. Such a chain can be described as a set of ferrons at the antiferromagnetic background. We found that two types of ferrons can exist in the system. The ground state of the chain corresponds to the ferrons with the sizes of the order of the localization length of the electron near the impurity. The ferrons of the second type produce a more extended distortion of spins in the chain. They are stable within a finite domain of the system parameters and can be treated as excitations above the ground state. The ferrons in the excited states can appear in pairs only. The energy of the excited states decreases with the growth in density of impurities. This can be interpreted as a manifestation of an attractive interaction between ferrons.Comment: 6 pages, 5 figures, RevTex4, submitted to PR
    corecore