742 research outputs found

    Self-consistent theory of turbulence

    Full text link
    A new approach to the stochastic theory of turbulence is suggested. The coloured noise that is present in the stochastic Navier-Stokes equation is generated from the delta-correlated noise allowing us to avoid the nonlocal field theory as it is the case in the conventional theory. A feed-back mechanism is introduced in order to control the noise intensity.Comment: submitted to J.Tech. Phys.Letters (St. Petersburg

    Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling

    Full text link
    Nonstationary pump-probe interaction between short laser pulses propagating in a resonant optically dense coherent medium is considered. A special attention is paid to the case, where the density of two-level particles is high enough that a considerable part of the energy of relatively weak external laser-fields can be coherently absorbed and reemitted by the medium. Thus, the field of medium reaction plays a key role in the interaction processes, which leads to the collective behavior of an atomic ensemble in the strongly coupled light-matter system. Such behavior results in the fast excitation interchanges between the field and a medium in the form of the optical ringing, which is analogous to polariton beating in the solid-state optics. This collective oscillating response, which can be treated as successive beats between light wave-packets of different group velocities, is shown to significantly affect propagation and amplification of the probe field under its nonlinear interaction with a nearly copropagating pump pulse. Depending on the probe-pump time delay, the probe transmission spectra show the appearance of either specific doublet or coherent dip. The widths of these features are determined by the density-dependent field-matter coupling coefficient and increase during the propagation. Besides that, the widths of the coherent features, which appear close to the resonance in the broadband probe-spectrum, exceed the absorption-line width, since, under the strong-coupling regime, the frequency of the optical ringing exceeds the rate of incoherent relaxation. Contrary to the stationary strong-field effects, the density- and coordinate-dependent transmission spectra of the probe manifest the importance of the collective oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.

    An improved \eps expansion for three-dimensional turbulence: two-loop renormalization near two dimensions

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed at two-loop order which incorporates the effect of pole singularities at d2d \to 2 in coefficients of the \eps expansion of universal quantities. For a proper account of the effect of these singularities two different approaches to the renormalization of the powerlike correlation function of the random force are analyzed near two dimensions. By direct calculation it is shown that the approach based on the mere renormalization of the nonlocal correlation function leads to contradictions at two-loop order. On the other hand, a two-loop calculation in the renormalization scheme with the addition to the force correlation function of a local term to be renormalized instead of the nonlocal one yields consistent results in accordance with the UV renormalization theory. The latter renormalization prescription is used for the two-loop renormalization-group analysis amended with partial resummation of the pole singularities near two dimensions leading to a significant improvement of the agreement with experimental results for the Kolmogorov constant.Comment: 23 pages, 2 figure

    Self-Organization in Multimode Microwave Phonon Laser (Phaser): Experimental Observation of Spin-Phonon Cooperative Motions

    Full text link
    An unusual nonlinear resonance was experimentally observed in a ruby phonon laser (phaser) operating at 9 GHz with an electromagnetic pumping at 23 GHz. The resonance is manifested by very slow cooperative self-detunings in the microwave spectra of stimulated phonon emission when pumping is modulated at a superlow frequency (less than 10 Hz). During the self-detuning cycle new and new narrow phonon modes are sequentially ``fired'' on one side of the spectrum and approximately the same number of modes are ``extinguished'' on the other side, up to a complete generation breakdown in a certain final portion of the frequency axis. This is usually followed by a short-time refractority, after which the generation is fired again in the opposite (starting) portion of the frequency axis. The entire process of such cooperative spectral motions is repeated with high degree of regularity. The self-detuning period strongly depends on difference between the modulation frequency and the resonance frequency. This period is incommensurable with period of modulation. It increases to very large values (more than 100 s) when pointed difference is less than 0.05 Hz. The revealed phenomenon is a kind of global spin-phonon self- organization. All microwave modes of phonon laser oscillate with the same period, but with different, strongly determined phase shifts - as in optical lasers with antiphase motions.Comment: LaTeX2e file (REVTeX4), 5 pages, 5 Postscript figures. Extended and revised version of journal publication. More convenient terminology is used. Many new bibliographic references are added, including main early theoretical and experimental papers on microwave phonon lasers (in English and in Russian

    A multiloop improvement of non-singlet QCD evolution equations

    Get PDF
    An approach is elaborated for calculation of "all loop" contributions to the non-singlet evolution kernels from the diagrams with renormalon chain insertions. Closed expressions are obtained for sums of contributions to kernels P(z)P(z) for the DGLAP equation and V(x,y)V(x,y) for the "nonforward" ER-BL equation from these diagrams that dominate for a large value of b0b_0, the first β\beta-function coefficient. Calculations are performed in the covariant ξ\xi-gauge in a MS-like scheme. It is established that a special choice of the gauge parameter ξ=3\xi=-3 generalizes the standard "naive nonabelianization" approximation. The solutions are obtained to the ER-BL evolution equation (taken at the "all loop" improved kernel), which are in form similar to one-loop solutions. A consequence for QCD descriptions of hard processes and the benefits and incompleteness of the approach are briefly discussed.Comment: 13 pages, revtex, 2 figures are enclosed as eps-file, the text style and figures are corrected following version, accepted for publication to Phys. Rev.

    Critical exponents from two-particle irreducible 1/N expansion

    Full text link
    We calculate the critical exponent ν\nu in the 1/N expansion of the two-particle-irreducible (2PI) effective action for the O(N) symmetric ϕ4\phi ^4 model in three spatial dimensions. The exponent ν\nu controls the behavior of a two-point function {\it near} the critical point TTcT\neq T_c, but can be evaluated on the critical point T=TcT=T_c by the use of the vertex function Γ(2,1)\Gamma^{(2,1)}. We derive a self-consistent equation for Γ(2,1)\Gamma^{(2,1)} within the 2PI effective action, and solve it by iteration in the 1/N expansion. At the next-to-leading order in the 1/N expansion, our result turns out to improve those obtained in the standard one-particle-irreducible calculation.Comment: 18 page

    High frequency dielectric and magnetic anomaly at the phase transition in NaV2O5

    Get PDF
    We found anomalies in the temperature dependence of the dielectric and the magnetic susceptibiliy of NaV_2O_5 in the microwave and far infrared frequency ranges. The anomalies occur at the phase transition temperature T_c, at which the spin gap opens. The real parts of the dielectric constants epsilon_a and epsilon_c decrease below T_c. The decrease of epsilon_a (except for the narrow region close to T_c) is proportional to the intensity of the x-ray reflection appearing at T_c. The dielectric constant anomaly can be explained by the zigzag charge ordering in the ab-plane appearing below T_c. The anomaly of the microwave magnetic losses is probably related to the coupling between the spin and charge degrees of freedom in vanadium ladders.Comment: 3 PS-figures, LATEX-text, new experimental data added, typos correcte

    Non-Linear Algebra and Bogolubov's Recursion

    Full text link
    Numerous examples are given of application of Bogolubov's forest formula to iterative solutions of various non-linear equations: one and the same formula describes everything, from ordinary quadratic equation to renormalization in quantum field theory.Comment: LaTex, 21 page

    Symmetry Factors of Feynman Diagrams for Scalar Fields

    Full text link
    The symmetry factor of Feynman diagrams for real and complex scalar fields is presented. Being analysis of Wick expansion for Green functions, the mentioned factor is derived in a general form. The symmetry factor can be separated into two ones corresponding to that of connected and vacuum diagrams. The determination of symmetry factors for the vacuum diagrams is necessary as they play a role in the effective action and phase transitions in cosmology. In the complex scalar theory the diagrams different in topology may give the same contribution, hence inverse of the symmetry factor (1/S) for total contribution is a summation of each similar ones (1/S_i), i.e., 1/S = \sum_i (1/S_i).Comment: Journal version, new references adde

    On the S-matrix renormalization in effective theories

    Full text link
    This is the 5-th paper in the series devoted to explicit formulating of the rules needed to manage an effective field theory of strong interactions in S-matrix sector. We discuss the principles of constructing the meaningful perturbation series and formulate two basic ones: uniformity and summability. Relying on these principles one obtains the bootstrap conditions which restrict the allowed values of the physical (observable) parameters appearing in the extended perturbation scheme built for a given localizable effective theory. The renormalization prescriptions needed to fix the finite parts of counterterms in such a scheme can be divided into two subsets: minimal -- needed to fix the S-matrix, and non-minimal -- for eventual calculation of Green functions; in this paper we consider only the minimal one. In particular, it is shown that in theories with the amplitudes which asymptotic behavior is governed by known Regge intercepts, the system of independent renormalization conditions only contains those fixing the counterterm vertices with n3n \leq 3 lines, while other prescriptions are determined by self-consistency requirements. Moreover, the prescriptions for n3n \leq 3 cannot be taken arbitrary: an infinite number of bootstrap conditions should be respected. The concept of localizability, introduced and explained in this article, is closely connected with the notion of resonance in the framework of perturbative QFT. We discuss this point and, finally, compare the corner stones of our approach with the philosophy known as ``analytic S-matrix''.Comment: 28 pages, 10 Postscript figures, REVTeX4, submitted to Phys. Rev.
    corecore