69 research outputs found

    Distinguishing quantum from classical oscillations in a driven phase qubit

    Full text link
    Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant perturbation, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently [N. Gronbech-Jensen and M. Cirillo, Phys. Rev. Lett. 95, 067001 (2005)] that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effect. First, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency (multiphoton processes), the classical effect also exists when the system is excited at the overtones. Second, the shape of the resonance is, in the classical case, characteristically asymmetric; while quantum resonances are described by symmetric Lorentzians. Third, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow to confidently distinguish the bona fide Rabi oscillations from their classical Doppelganger.Comment: 8 pages, 4 figures; v2: minor corrections, Fig.1 added, introduction expande

    Giving electrons a ride: nanomechanical electron shuttles

    Full text link
    Nanomechanical shuttles transferring small groups of electrons or even individual electrons from one electrode to another offer a novel approach to the problem of controlled charge transport. Here, we report the fabrication of shuttle-junctions consisting of a 20 nm diameter gold nanoparticle embedded within the gap between two gold electrodes. The nanoparticle is attached to the electrodes through a monolayer of flexible organic molecules which play the role of springs so that when a sufficient voltage bias is applied, then nanoparticle starts to oscillate transferring electrons from one electrode to the other. Current-voltage characteristics for the fabricated devices have been measured and compared with the results of our computer simulations.Comment: 11 pages, 4 figure

    Beer classification based on the array of solid-contact Potentiometric sensors with thiacalixarene receptors

    Get PDF
    Potentiometric sensors based on carbon electrodes made by screen-printing and glassy carbon electrodes covered with electropolymerized polyaniline and thiacalix[4]arene receptors have been developed for discrimination of various beer brands using three sensors. The prediction was 100% true according to principal component analysis and linear discriminant analysis. © 2014 Springer Science+Business Media, Inc

    Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear, and quantum phenomena

    Full text link
    The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology, and medicine. We review the problem of linear and non-linear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect, and the pumping of weaker waves by a stronger one. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunnelling of fluxons through stacks of Josephson junctions. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices. We also discuss the problem of coherent radiation (superradiance) of the THz waves by exciting uniform Josephson oscillations. The effects reviewed here could be potentially useful for sub-THz and THz emitters, filters, and detectors

    Optimal period of discrete measurements of random processes

    No full text
    corecore