34 research outputs found
On Pure Spinor Superfield Formalism
We show that a certain superfield formalism can be used to find an off-shell
supersymmetric description for some supersymmetric field theories where
conventional superfield formalism does not work. This "new" formalism contains
even auxiliary variables in addition to conventional odd super-coordinates. The
idea of this construction is similar to the pure spinor formalism developed by
N.Berkovits. It is demonstrated that using this formalism it is possible to
prove that the certain Chern-Simons-like (Witten's OSFT-like) theory can be
considered as an off-shell version for some on-shell supersymmetric field
theories. We use the simplest non-trivial model found in [2] to illustrate the
power of this pure spinor superfield formalism. Then we redo all the
calculations for the case of 10-dimensional Super-Yang-Mills theory. The
construction of off-shell description for this theory is more subtle in
comparison with the model of [2] and requires additional Z_2 projection. We
discover experimentally (through a direct explicit calculation) a non-trivial
Z_2 duality at the level of Feynman diagrams. The nature of this duality
requires a better investigation
Classical BV theories on manifolds with boundary
In this paper we extend the classical BV framework to gauge theories on
spacetime manifolds with boundary. In particular, we connect the BV
construction in the bulk with the BFV construction on the boundary and we
develop its extension to strata of higher codimension in the case of manifolds
with corners. We present several examples including electrodynamics, Yang-Mills
theory and topological field theories coming from the AKSZ construction, in
particular, the Chern-Simons theory, the theory, and the Poisson sigma
model. This paper is the first step towards developing the perturbative
quantization of such theories on manifolds with boundary in a way consistent
with gluing.Comment: The second version has many typos corrected, references added. Some
typos are probably still there, in particular, signs in examples. In the
third version more typoes are corrected and the exposition is slightly
change
The Poisson sigma model on closed surfaces
Using methods of formal geometry, the Poisson sigma model on a closed surface
is studied in perturbation theory. The effective action, as a function on
vacua, is shown to have no quantum corrections if the surface is a torus or if
the Poisson structure is regular and unimodular (e.g., symplectic). In the case
of a Kahler structure or of a trivial Poisson structure, the partition function
on the torus is shown to be the Euler characteristic of the target; some
evidence is given for this to happen more generally. The methods of formal
geometry introduced in this paper might be applicable to other sigma models, at
least of the AKSZ type.Comment: 32 pages; references adde