101 research outputs found

    Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions

    Full text link
    Several stochastic simulation algorithms (SSAs) have been recently proposed for modelling reaction-diffusion processes in cellular and molecular biology. In this paper, two commonly used SSAs are studied. The first SSA is an on-lattice model described by the reaction-diffusion master equation. The second SSA is an off-lattice model based on the simulation of Brownian motion of individual molecules and their reactive collisions. In both cases, it is shown that the commonly used implementation of bimolecular reactions (i.e. the reactions of the form A + B -> C, or A + A -> C) might lead to incorrect results. Improvements of both SSAs are suggested which overcome the difficulties highlighted. In particular, a formula is presented for the smallest possible compartment size (lattice spacing) which can be correctly implemented in the first model. This implementation uses a new formula for the rate of bimolecular reactions per compartment (lattice site).Comment: 33 pages, submitted to Physical Biolog

    Solving the chemical master equation using sliding windows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species.</p> <p>Results</p> <p>In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy.</p> <p>Conclusions</p> <p>The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori.</p

    Flash Proton Radiography

    No full text
    corecore