3,013 research outputs found

    Fluctuation Theorem in Rachet System

    Full text link
    Fluctuation Theorem(FT) has been studied as far from equilibrium theorem, which relates the symmetry of entropy production. To investigate the application of this theorem, especially to biological physics, we consider the FT for tilted rachet system. Under, natural assumption, FT for steady state is derived.Comment: 6 pages, 2 figure

    Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales

    Get PDF
    We experimentally demonstrate the fluctuation theorem, which predicts appreciable and measurable violations of the second law of thermodynamics for small systems over short time scales, by following the trajectory of a colloidal particle captured in an optical trap that is translated relative to surrounding water molecules. From each particle trajectory, we calculate the entropy production/consumption over the duration of the trajectory and determine the fraction of second law–defying trajectories. Our results show entropy consumption can occur over colloidal length and time scales

    Simultaneous X-ray and optical spectroscopy of the Oef supergiant lambda Cep

    Full text link
    Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, the stars of the Oef class have been suggested to feature large-scale structures in their wind. High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably-single O-type stars can help us understand the physics of their stellar winds. We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6Ief star lambda Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He II 4686 and H-alpha emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of lambda Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently. During our observing campaign, the He II 4686 line varies on a timescale of ~18 hours. On the contrary, the H-alpha line profile displays a modulation on a timescale of 4.1 days which is likely the rotation period of the star. The X-ray flux varies on time-scales of days and could in fact be modulated by the same 4.1 days period as H-alpha, although both variations are shifted in phase. The high-resolution X-ray spectrum reveals broad and skewed emission lines as expected for the X-ray emission from a distribution of wind-embedded shocks. Most of the X-ray emission arises within less than 2R* above the photosphere.Comment: Accepted for publication in Astronomy & Astrophysic

    The grand canonical ABC model: a reflection asymmetric mean field Potts model

    Full text link
    We investigate the phase diagram of a three-component system of particles on a one-dimensional filled lattice, or equivalently of a one-dimensional three-state Potts model, with reflection asymmetric mean field interactions. The three types of particles are designated as AA, BB, and CC. The system is described by a grand canonical ensemble with temperature TT and chemical potentials TλAT\lambda_A, TλBT\lambda_B, and TλCT\lambda_C. We find that for λA=λB=λC\lambda_A=\lambda_B=\lambda_C the system undergoes a phase transition from a uniform density to a continuum of phases at a critical temperature T^c=(2π/3)1\hat T_c=(2\pi/\sqrt3)^{-1}. For other values of the chemical potentials the system has a unique equilibrium state. As is the case for the canonical ensemble for this ABCABC model, the grand canonical ensemble is the stationary measure satisfying detailed balance for a natural dynamics. We note that T^c=3Tc\hat T_c=3T_c, where TcT_c is the critical temperature for a similar transition in the canonical ensemble at fixed equal densities rA=rB=rC=1/3r_A=r_B=r_C=1/3.Comment: 24 pages, 3 figure

    Reaction-diffusion systems and nonlinear waves

    Full text link
    The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. The importance of the derived results lies in the fact that numerous results on fractional reaction, fractional diffusion, anomalous diffusion problems, and fractional telegraph equations scattered in the literature can be derived, as special cases, of the results investigated in this article.Comment: LaTeX, 16 pages, corrected typo

    Trajectories of depressive symptoms after a major cardiac event

    Get PDF
    Depression is a common comorbidity in cardiac patients. This study sought to document fluctuations of depressive symptoms in the 12 months after a first major cardiac event. In all, 310 patients completed a battery of psychosocial measures including the depression subscale of the Symptom Check List-90-Revised. A total of 252 of them also completed follow-up measures at 3 and 12 months. Trajectories of depressive symptoms were classified as none, worsening symptoms, sustained remission, and persistent symptoms. Although the prevalence of depressive symptoms was consistent at each assessment, there was considerable fluctuation between symptom classes. Regression analyses were performed to identify predictors of different trajectories.Oskar Mittag, Hanna Kampling, Erik Farin and Phillip J Tull

    Variational method and duality in the 2D square Potts model

    Full text link
    The ferromagnetic q-state Potts model on a square lattice is analyzed, for q>4, through an elaborate version of the operatorial variational method. In the variational approach proposed in the paper, the duality relations are exactly satisfied, involving at a more fundamental level, a duality relationship between variational parameters. Besides some exact predictions, the approach is very effective in the numerical estimates over the whole range of temperature and can be systematically improved.Comment: 20 pages, 5 EPS figure

    Boundary and Bulk Phase Transitions in the Two Dimensional Q > 4 State Potts Model

    Full text link
    The surface and bulk properties of the two-dimensional Q > 4 state Potts model in the vicinity of the first order bulk transition point have been studied by exact calculations and by density matrix renormalization group techniques. For the surface transition the complete analytical solution of the problem is presented in the QQ \to \infty limit, including the critical and tricritical exponents, magnetization profiles and scaling functions. According to the accurate numerical results the universality class of the surface transition is independent of the value of Q > 4. For the bulk transition we have numerically calculated the latent heat and the magnetization discontinuity and we have shown that the correlation lengths in the ordered and in the disordered phases are identical at the transition point.Comment: 11 pages, RevTeX, 6 PostScript figures included. Manuscript substantially extended, details on the analytical and numerical calculations added. To appear in Phys. Rev.

    Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

    Full text link
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in "equilibrium", even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.Comment: 28 pages, 11 figure
    corecore