30 research outputs found
BIOCONVERSION OF SECONDARY PRODUCTS OF PROCESSING OF GRAIN CEREALS CROPS
A method has been developed for the production of organic ingredients from secondary products resulting from the high-quality grinding of triticale and wheat into flour, which involves the enzymatic action of amylolytic enzymes to release starch polysaccharides while preserving the native properties of dietary fibers and biologically active substances associated with them. To a large extent, the features of the properties of the obtained ingredients are due to the number and composition of the components of dietary fiber of grain, as well as the morphological features of their structure. It is shown that the viscosity of aqueous colloidal systems at a concentration of soluble dietary fiber of the ingredient 0.5 % increases 11 times; at a concentration of 1.0 % Β β 30 times, forming a viscous gel-like structure. This allows them to be used for gelling, thickening and stabilization of aquatic food systems. The use of ingredients with a high content of NLP in baking is possible only taking into account their water absorption capacity. A method for the enzymatic modification of secondary products of processing of grain triticale was developed. On the basis of the study of the kinetics and efficiency of the effect of proteolytic and cellulolytic enzyme preparations (EP) and their compositions, optimal conditions for enzymatic modification (the EP dosage is 0.5β¦0.75 units of PA/g of bran, 0.3β¦0.4 units of CA/g of bran, the optimum temperature is 40β50 Β°Π‘, pH is 5.0 and 3.5, the duration of reactions is 1.5 hours) have been determined. The use of cellulolytic EP allowed to increase the amount of reducing substances and soluble protein by 1.5β2.5 times in comparison with the control sample. The biomodified bran obtained using the MEC Β«Shearzyme 500 LΒ» + Β«Neutrase 1.5 MGΒ» and Β«Viscoferm LΒ» + Β«Distizym Protacid ExtraΒ» has a high degree of hydrolysis of non-starch polysaccharides and proteins, is characterized by a certain ratio of high-, medium-, low-molecular peptides and amino acids, has different functional and technological properties. They can be used in the production of a wide range of general-purpose, functional and treatmentand-prophylactic food products.A method has been developed for the production of organic ingredients from secondary products resulting from the high-quality grinding of triticale and wheat into flour, which involves the enzymatic action of amylolytic enzymes to release starch polysaccharides while preserving the native properties of dietary fibers and biologically active substances associated with them. To a large extent, the features of the properties of the obtained ingredients are due to the number and composition of the components of dietary fiber of grain, as well as the morphological features of their structure. It is shown that the viscosity of aqueous colloidal systems at a concentration of soluble dietary fiber of the ingredient 0.5 % increases 11 times; at a concentration of 1.0 % Β β 30 times, forming a viscous gel-like structure. This allows them to be used for gelling, thickening and stabilization of aquatic food systems. The use of ingredients with a high content of NLP in baking is possible only taking into account their water absorption capacity. A method for the enzymatic modification of secondary products of processing of grain triticale was developed. On the basis of the study of the kinetics and efficiency of the effect of proteolytic and cellulolytic enzyme preparations (EP) and their compositions, optimal conditions for enzymatic modification (the EP dosage is 0.5β¦0.75 units of PA/g of bran, 0.3β¦0.4 units of CA/g of bran, the optimum temperature is 40β50 Β°Π‘, pH is 5.0 and 3.5, the duration of reactions is 1.5 hours) have been determined. The use of cellulolytic EP allowed to increase the amount of reducing substances and soluble protein by 1.5β2.5 times in comparison with the control sample. The biomodified bran obtained using the MEC Β«Shearzyme 500 LΒ» + Β«Neutrase 1.5 MGΒ» and Β«Viscoferm LΒ» + Β«Distizym Protacid ExtraΒ» has a high degree of hydrolysis of non-starch polysaccharides and proteins, is characterized by a certain ratio of high-, medium-, low-molecular peptides and amino acids, has different functional and technological properties. They can be used in the production of a wide range of general-purpose, functional and treatmentand-prophylactic food products
CHANGES OF THE OPTICAL PROPERTIES OF TOP-GRADE FLOUR (SEMOLINA) FROM DURUM WHEAT DURING ITS RIPENING
Using the rapid method of digital image analysis by the developed scanning flour analyzer the optical properties of flour (semolina) obtained in laboratory and production conditions from durum wheat of three years of harvest (2017β2019), namely the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum, were determined. The semolina color was also evaluated by the Konica Minolta CR-410 colorimeter. It is established that the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum did not change within the first 5 to 6 days after grinding. The change of these indicators for all the samples is observed in the period from 6 to 20 days after grinding, there with the Β«yellownessΒ» indicator decreased by 25 to 40 relative units, the color characteristic in the blue part of the spectrum increased on average by 133,75 relative units. Over the next three months, there was no change of color (by both indicators). In the course of experimental work the optical properties change depending upon carotenoids content of flour (semolina) during its ripening was shown. The correlation dependence between the Β«yellownessΒ» indicator of flour (semolina) and its carotenoids content is characterized by a high approximation coefficient. The dependence of the color characteristic of flour in the blue part of the spectrum on the content of carotenoids is characterized by an approximation coefficient equal to 0.9358, and is described as a polynomial equation. It shows, that with a low carotenoid content, the considered indicator is higher by an average of 1100 relative units compared to the color of samples with a carotenoid content from 0.70 to 1.21 mcg/g. At that during storage the optical properties of flour variety with the lowest carotenoids content remained practically the same. During 78 days of storage, there was no significant change of color characteristics of the industrial flour samples, studied from the eleventh day after grinding β 5β8 times higher than the average repeatability of the measurement results.Using the rapid method of digital image analysis by the developed scanning flour analyzer the optical properties of flour (semolina) obtained in laboratory and production conditions from durum wheat of three years of harvest (2017β2019), namely the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum, were determined. The semolina color was also evaluated by the Konica Minolta CR-410 colorimeter. It is established that the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum did not change within the first 5 to 6 days after grinding. The change of these indicators for all the samples is observed in the period from 6 to 20 days after grinding, there with the Β«yellownessΒ» indicator decreased by 25 to 40 relative units, the color characteristic in the blue part of the spectrum increased on average by 133,75 relative units. Over the next three months, there was no change of color (by both indicators). In the course of experimental work the optical properties change depending upon carotenoids content of flour (semolina) during its ripening was shown. The correlation dependence between the Β«yellownessΒ» indicator of flour (semolina) and its carotenoids content is characterized by a high approximation coefficient. The dependence of the color characteristic of flour in the blue part of the spectrum on the content of carotenoids is characterized by an approximation coefficient equal to 0.9358, and is described as a polynomial equation. It shows, that with a low carotenoid content, the considered indicator is higher by an average of 1100 relative units compared to the color of samples with a carotenoid content from 0.70 to 1.21 mcg/g. At that during storage the optical properties of flour variety with the lowest carotenoids content remained practically the same. During 78 days of storage, there was no significant change of color characteristics of the industrial flour samples, studied from the eleventh day after grinding β 5β8 times higher than the average repeatability of the measurement results
TECHNOLOGICAL SCHEMES FOR THE PROCESSES OF PREPARATION AND MILLING BINARY GRAIN MIXTURES AND BIOCHEMICAL EVALUATION OF PRODUCED PRODUCTS
A study of the preparation and milling of a grain mixture containing 7% of flax seeds has been carried out in order to obtain a composite wheat-flax flour, in which the entire biopotential of flax seeds was preserved. It was revealed that the preparation of the components of the grain mixture should be carried out independently, in parallel flows. During the wheat grain preparation the cold conditioning was carried out, the modes of which were the following: humidityΒ β 15.5%, dwell time in the waterΒ β 24 hours. The optimal conditions for milling the wheat-flax mixture have been determined, which are the following: yield (%) / ash content (%) in 3 break systems (inΒ terms of the 1st break systemΒ β grain) for the first break systemΒ β 53.5 / 1.00; for the second break system.Β β 22.2 / 1.11; totally for the first and the second break systemsΒ β 75.7 / 1.035; totally for the first, the second and the third break systemsΒ β 81.0 / 1.1. The technological schemes have been developed and the new varieties of wheat-flax flour with predetermined technological properties and increased nutritional value have been formed. The approximate indices of yield and quality of the new wheat-flax flour varieties are the following: Flour AΒ β yield 45β50%, lipids 3.6β4.0%, protein 13β13.5%, ash 0.55β0.70%, whitenessΒ β 50 conventional units; Flour BΒ β yield 20β25%, lipids 5.5β6.0%, protein 14β14.5%, ash 0.9β1.25%, whitenessΒ β 22 conventional units; Flour CΒ β yield 70β75%, lipids 4.5β5.0%, protein 13.6β14.0%, ash 0.75β0.90%, whitenessΒ β 36 conventional units. It was indicated that the total lipids content in flour from two-component mixtures increases by about 4 times, and the total protein content in the studied samples increases by 1β2%. The content of linoleic acid (Ι·β6) in wheat-flax flour samples is 1.6β¦3.3 times higher than in wheat flour; the content of linolenic acid (Ι·β3) in wheat-flax flour samples is 36.8β¦57.2 times higher than in wheat flour (taking into account the total lipids content in the samples). The enrichment of wheat flour due to flax seeds allows to make up the deficiency of PUFA family in the diet of a modern person and to obtain products on a grain basis of a balanced composition
Π Π²ΠΎΠΏΡΠΎΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ° ΠΏΠΎ Π³Π»ΡΠΊΠΎΠ·Π΅
The analysis of methods for determining the glycemic index (GI) of food products in vivo and in vitro. The authors note that the difference in the methodological approach to the determination of GI in vitro leads to obtaining results that are difficult to compare. A modified method for determining the GI for glucose is proposed, which is based on the method for determining the glycemic index for glucose, which makes it possible to assess the digestibility of various ingredients in products in terms of sugar load, and to calculate the glycemic index for glucose formed in the process of "digestionβ of the test product in vitro. The modified technique provides for the use of digestive enzyme preparations: Acedin-pepsin and Panzinorm to provide a deeper "digestionβ in vitro, providing a deep degree of hydrolysis of the main macronutrients in in vitro model experiments. The conditions for carrying out enzymatic hydrolysis reactions (temperature, pH, reaction duration) were selected experimentally. The studies carried out to determine the GI in vitro, according to the proposed method, showed comparable values, which indicates the possibility of using this method for the determination of GI in vitro. The results obtained should be considered as indicative, since the authors adhere to the position that the true value of the GI index can only be determined by blood analysis. But in this case, the value of GI is influenced by many factors, including the individual characteristics of the human organism.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ° (ΠΠ) ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² in vivo ΠΈ in vitro. ΠΠ²ΡΠΎΡΡ ΠΎΡΠΌΠ΅ΡΠ°ΡΡ ΡΡΠΎ ΡΠ°Π·Π½ΠΈΡΠ° Π² ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π΅ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΠ in vitro ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ, ΡΡΡΠ΄Π½ΠΎ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠΌΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ². ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΠ in vitro Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π»Π΅ΠΆΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ° ΠΏΠΎ Π³Π»ΡΠΊΠΎΠ·Π΅, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠ΅Π½ΠΈΡΡ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΡΠ°Ρ
Π°ΡΠ½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΡΠ²ΠΎΡΠ΅ΠΌΠΎΡΡΡ Π² ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΈΠ½Π³ΡΠ΅Π΄ΠΈΠ΅Π½ΡΠΎΠ², ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ ΠΏΠΎ Π³Π»ΡΠΊΠΎΠ·Π΅, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π²ΡΠ΅ΠΉΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Β«ΠΏΠ΅ΡΠ΅Π²Π°ΡΠΈΠ²Π°Π½ΠΈΡΒ» ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° in vitro. ΠΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ³ΠΎ Β«ΠΏΠ΅ΡΠ΅Π²Π°ΡΠΈΠ²Π°Π½ΠΈΡΒ» in vitro ΠΏΠΈΡΠ΅Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ²: ΠΡΠ΅Π΄ΠΈΠ½-ΠΏΠ΅ΠΏΡΠΈΠ½ ΠΈ ΠΠ°Π½Π·ΠΈΠ½ΠΎΡΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ
Π² ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Ρ
in vitro Π²ΡΡΠΎΠΊΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΌΠ°ΠΊΡΠΎΠ½ΡΡΡΠΈΠ΅Π½ΡΠΎΠ². Π£ΡΠ»ΠΎΠ²ΠΈΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅Π°ΠΊΡΠΈΠΉ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π° (ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°, ΡΠ, ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠΈ) Π±ΡΠ»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±ΡΠ°Π½Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΠ in vitro, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠΌΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΠ in vitro. ΠΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²ΠΎΡΠ½ΡΠ΅, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°Π²ΡΠΎΡΡ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ, ΡΡΠΎ ΠΈΡΡΠΈΠ½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΠ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ Π»ΠΈΡΡ ΠΏΠΎ Π°Π½Π°Π»ΠΈΠ·Ρ ΠΊΡΠΎΠ²ΠΈ, Π½ΠΎ ΠΈ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΠ Π²Π»ΠΈΡΠ΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΊΡΠΎΡΠΎΠ², Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°.
ΠΡΡΡΠ±ΠΈ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΎΠΉ Π·Π΅ΡΠ½ΠΎΡΠΌΠ΅ΡΠΈ ΠΊΠ°ΠΊ ΠΎΠ±ΡΠ΅ΠΊΡ Π³Π»ΡΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ. Π§Π°ΡΡΡ 2. Π£Π³Π»Π΅Π²ΠΎΠ΄Π½ΠΎ-Π°ΠΌΠΈΠ»Π°Π·Π½ΡΠΉ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ
Polycomponent bran obtained by joint grinding of a grain mixture from cereals (wheat), legumes (lentils) and oilseeds (flax) should be considered as a valuable secondary raw material, the use of which for deep processing will make it possible to obtain various food and feed ingredients. An assessment of the carbohydrate-amylase and lipid complexes of the three variants of multicomponent bran showed that the ratio of amylose and amylopectin in the starch of three-component bran is almost the same, however, in lentil-flax bran, the proportion of amylose is 1.6 times higher than in the first two variants. The specific activity of amylases in three-component bran is about 2 times higher than in lentil-flax bran. In addition, the latter are characterized by a higher content of reducing sugars and fiber. The molecular weight of amylases isolated from three-component bran, according to gel chromatography, was: Ξ±-amylase β 40,000 Da; Ξ²-amylase β 60,000 Da. It has been established that the addition of flax seeds to the grinding mixture significantly increases the fat content in bran 6.4; 6.0 and 12.9%. The fatty acid composition of the studied bristles is characterized by the predominance of unsaturated fatty acids. At the same time, the ratio of essential acids β linoleic acid (Ι·β6) to Ξ±-linolenic acid (Ι·β3) in favor of the most deficient Ξ±-linolenic acid β was typical for lentil-flax bran and amounted to 1:4.2. The activity of alkaline lipases, which exhibit their effect at pH 8.0 (mainly cereal lipases), and acid lipases (mainly oilseed lipases) with an optimum of action at pH 4.7 in three-component bran samples are approximately the same, and lentil-flax bran is characterized by a high specific acid lipase activity, which is approximately 4.2 times higher than the activity of acid lipases of three-component bran. The data obtained, along with data on the characteristics of the protein-proteinase complex of the studied types of bran, will be used in the development of methods for enzymatic modification (deep processing) and in the preparation of components for the creation of new food products with increased nutritional and biological value.ΠΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠ΅ ΠΎΡΡΡΠ±ΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΌ ΡΠ°Π·ΠΌΠΎΠ»Π΅ Π·Π΅ΡΠ½ΠΎΡΠΌΠ΅ΡΠΈ ΠΈΠ· Π·Π΅ΡΠ½ΠΎΠ²ΡΡ
(ΠΏΡΠ΅Π½ΠΈΡΠ°), Π±ΠΎΠ±ΠΎΠ²ΡΡ
(ΡΠ΅ΡΠ΅Π²ΠΈΡΠ°) ΠΈ ΠΌΠ°ΡΠ»ΠΈΡΠ½ΡΡ
(Π»Π΅Π½) ΠΊΡΠ»ΡΡΡΡ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΠΎΡΠΈΡΠ½ΠΎΠ΅ ΡΡΡΡΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΄Π»Ρ Π³Π»ΡΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΠΈΡΠ΅Π²ΡΠ΅ ΠΈ ΠΊΠΎΡΠΌΠΎΠ²ΡΠ΅ ΠΈΠ½Π³ΡΠ΅Π΄ΠΈΠ΅Π½ΡΡ. ΠΡΠ΅Π½ΠΊΠ° ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎ-Π°ΠΌΠΈΠ»Π°Π·Π½ΠΎΠ³ΠΎ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΡΠ΅Ρ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΠΏΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, ΡΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΈΠ»ΠΎΠ·Ρ ΠΈ Π°ΠΌΠΈΠ»ΠΎΠΏΠ΅ΠΊΡΠΈΠ½Π° Π² ΠΊΡΠ°Ρ
ΠΌΠ°Π»Π΅ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±ΡΡ
Π΄ΠΎΠ»Ρ Π°ΠΌΠΈΠ»ΠΎΠ·Ρ Π² 1,6 ΡΠ°Π·Π° Π²ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΠΏΠ΅ΡΠ²ΡΡ
Π΄Π²ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ
. Π£Π΄Π΅Π»ΡΠ½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π°ΠΌΠΈΠ»Π°Π· ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 2 ΡΠ°Π·Π° Π²ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±ΡΡ
. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π²ΠΎΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡΠΈΡ
ΡΠ°Ρ
Π°ΡΠΎΠ² ΠΈ ΠΊΠ»Π΅ΡΡΠ°ΡΠΊΠΈ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΠΌΠ°ΡΡΠ° Π°ΠΌΠΈΠ»Π°Π·, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΈΠ· ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ, ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ Π³Π΅Π»Ρ-Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π°: Ξ±-Π°ΠΌΠΈΠ»Π°Π·Π° β 40 000 ΠΠ°; Ξ²-Π°ΠΌΠΈΠ»Π°Π·Π° β 60 000 ΠΠ°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΡΠ½ Π»ΡΠ½Π° Π² ΠΏΠΎΠΌΠΎΠ»ΡΠ½ΡΡ ΡΠΌΠ΅ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΆΠΈΡΠ° Π² ΠΎΡΡΡΠ±ΡΡ
6,4; 6,0 ΠΈ 12,9%. ΠΠΈΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ Π½Π΅Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ β Π»ΠΈΠ½ΠΎΠ»Π΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (Ι·-6) ΠΊ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠ΅ (Ι·-3) Π² ΠΏΠΎΠ»ΡΠ·Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π΄Π΅ΡΠΈΡΠΈΡΠ½ΠΎΠΉ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ β Π±ΡΠ»ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ ΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 1:4,2. ΠΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅Π»ΠΎΡΠ½ΡΡ
Π»ΠΈΠΏΠ°Π·, ΠΏΡΠΎΡΠ²Π»ΡΡΡΠΈΡ
ΡΠ²ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΈ ΡΠ 8,0 (ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π·Π΅ΡΠ½ΠΎΠ²ΡΠ΅ Π»ΠΈΠΏΠ°Π·Ρ), ΠΈ ΠΊΠΈΡΠ»ΡΡ
Π»ΠΈΠΏΠ°Π· (ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π»ΠΈΠΏΠ°Π·Ρ ΠΌΠ°ΡΠ»ΠΈΡΠ½ΡΡ
ΠΊΡΠ»ΡΡΡΡ) Ρ ΠΎΠΏΡΠΈΠΌΡΠΌΠΎΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΡΠΈ ΡΠ 4,7 Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°Ρ, Π° ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½ΡΠ΅ ΠΎΡΡΡΠ±ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΊΠΈΡΠ»ΠΎΠΉ Π»ΠΈΠΏΠ°Π·Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 4,2 ΡΠ°Π·Π° ΠΏΡΠ΅Π²ΠΎΡΡ
ΠΎΠ΄ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΡΡ
Π»ΠΈΠΏΠ°Π· ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅, Π½Π°ΡΡΠ΄Ρ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΏΠΎ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΎΡΡΡΠ±Π΅ΠΉ, Π±ΡΠ΄ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ (Π³Π»ΡΠ±ΠΎΠΊΠ°Ρ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠ°) ΠΈ ΠΏΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠΈΡΠ΅Π²ΠΎΠΉ ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π½Π½ΠΎΡΡΡΡ
ΠΡΡΡΠ±ΠΈ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΎΠΉ Π·Π΅ΡΠ½ΠΎΡΠΌΠ΅ΡΠΈ β ΠΊΠ°ΠΊ ΠΎΠ±ΡΠ΅ΠΊΡ Π³Π»ΡΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ. Π§Π°ΡΡΡ 1. ΠΠ΅Π»ΠΊΠΎΠ²ΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ
Deep processing of grain bran is an important, promising direction that allows the use of by-products (secondary products) of flour milling in order to obtain valuable food components for the creation of enriched food products, as well as specialized grain-based products. Polycomponent bran, obtained during the joint processing of cereals (wheat), legumes (lentils) and oilseeds (flax), in terms of its chemical composition and the state of the proteinproteinase complex, is a unique raw material that can be used for further processing. In particular, it is suitable for the use in producing hydrolysates and other structurally modified products using enzymatic biocatalytic methods. An assessment of the chemical composition and biochemical characteristics of new types of bran showed a high protein content, in which the proportion of the albumin-globulin fraction predominated (78.5-86%), while a significant part of the protein (7.6-10%) was strongly bonded to other biopolymers. The bran proteolytic enzymes acting in the neutral (pH 6.8) and acidic (pH 3.8) pH zones were isolated and studied. It was shown that lentil-flax bran was characterized by the highest proteolytic activity, while the activity of neutral proteinases exceeded the activity of acid proteinases in all three variants: 1.32, 1.37 and 1.56 times, respectively. It was established that protein inhibitors of trypsin and their own proteinases were present in all studied bran types. They inhibited the activity of acid proteinases to a greater extent than neutral ones (% inhibition): 37.5 versus 28.2 (option 1); 32.3 versus 24.5 (option 2); 48.6 versus 32.4 (option 3). The molecular weight, according to gel chromatography, was as follows: neutral proteinases 250,000 200,000 Da, acid proteinases 100,000 75,000 Da. Protein inhibitors isolated from multicomponent bran had a molecular weight of 25,000-20,000 Da. The data obtained will be used in experimental studies on targeted biocatalysis in order to obtain products of a given composition and properties.ΠΠ»ΡΠ±ΠΎΠΊΠ°Ρ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠ° Π·Π΅ΡΠ½ΠΎΠ²ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ β Π²Π°ΠΆΠ½ΠΎΠ΅, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ±ΠΎΡΠ½ΡΠ΅ (Π²ΡΠΎΡΠΈΡΠ½ΡΠ΅) ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΠΌΡΠΊΠΎΠΌΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π½Π½ΡΡ
ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Π½ΡΡ
ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π½Π° Π·Π΅ΡΠ½ΠΎΠ²ΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π΅. ΠΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠ΅ ΠΎΡΡΡΠ±ΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠ΅ Π·Π΅ΡΠ½ΠΎΠ²ΡΡ
(ΠΏΡΠ΅Π½ΠΈΡΠ°), Π±ΠΎΠ±ΠΎΠ²ΡΡ
(ΡΠ΅ΡΠ΅Π²ΠΈΡΠ°) ΠΈ ΠΌΠ°ΡΠ»ΠΈΡΠ½ΡΡ
(Π»Π΅Π½) ΠΊΡΠ»ΡΡΡΡ, ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΌΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΡΡΠ°Π²Ρ ΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΡΡΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΎΠ½ΠΎ ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π°ΡΠΎΠ² ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΡΡΡΡΠΊΡΡΡΠ½ΠΎ-ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°. ΠΡΠ΅Π½ΠΊΠ° Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ Π½ΠΎΠ²ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΎΡΡΡΠ±Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π΄ΠΎΠ»Ρ Π°Π»ΡΠ±ΡΠΌΠΈΠ½ΠΎ-Π³Π»ΠΎΠ±ΡΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΡΡΠ°ΠΊΡΠΈΠΈ (78,5-86%), ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠ°ΡΡΡ Π±Π΅Π»ΠΊΠ° (7,6-10%) ΠΏΡΠΎΡΠ½ΠΎ ΡΠ²ΡΠ·Π°Π½Π° Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ. ΠΡΠ΄Π΅Π»Π΅Π½Ρ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΡ ΠΎΡΡΡΠ±Π΅ΠΉ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠ΅ Π² Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΠΎΠΉ (ΡΠ 6,8) ΠΈ ΠΊΠΈΡΠ»ΠΎΠΉ (ΡΠ 3,8) Π·ΠΎΠ½Π°Ρ
ΡΠ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½ΡΠ΅ ΠΎΡΡΡΠ±ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· Π²ΠΎ Π²ΡΠ΅Ρ
ΡΡΠ΅Ρ
Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ
: Π² 1,32; 1,37 ΠΈ 1,56 ΡΠ°Π·Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΠΎ Π²ΡΠ΅Ρ
ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΡΡΡΠ±ΡΡ
ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ Π±Π΅Π»ΠΊΠΎΠ²ΡΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ ΡΡΠΈΠΏΡΠΈΠ½Π° ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·. ΠΠ½ΠΈ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· Π² Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠ΅ΠΌ Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΡΡ
(% ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΡ): 37,5 ΠΏΡΠΎΡΠΈΠ² 28,2 (Π²Π°ΡΠΈΠ°Π½Ρ 1); 32,3 ΠΏΡΠΎΡΠΈΠ² 24,5 (Π²Π°ΡΠΈΠ°Π½Ρ 2); 48,6 ΠΏΡΠΎΡΠΈΠ² 32,4 (Π²Π°ΡΠΈΠ°Π½Ρ 3). ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΠΌΠ°ΡΡΠ°, ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ Π³Π΅Π»Ρ-Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ, ΡΠΎΡΡΠ°Π²ΠΈΠ»Π°: Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ 250 000 200 000 ΠΠ°, ΠΊΠΈΡΠ»ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ 100 000 75 000 ΠΠ°. ΠΠ΅Π»ΠΊΠΎΠ²ΡΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΡΡΡΠ±Π΅ΠΉ, ΠΈΠΌΠ΅Π»ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΌΠ°ΡΡΡ 25 000 20 000 ΠΠ°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π±ΡΠ΄ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ
, ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΌΡ Π±ΠΈΠΎΠΊΠ°ΡΠ°Π»ΠΈΠ·Ρ Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²
ΠΠ΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°Ρ Π΄Π»Ρ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π½ΠΈΡΠ½ΠΎΠΉ ΠΌΡΠΊΠΈ.
Wheat flour, especially high grade flour, is significantly impoverished in macro-, micronutrients and other valuable components such as essential amino acids, essential fatty acids, vitamins, minerals, soluble and insoluble dietary fibers. To enrich wheat flour, the authors produced lentil-flax flour (protein-fat concentrate) with the high protein (27.5%) and fat (11.9%) content. The developed technological scheme of the combined grinding of lentil (67%) and flax (33%) seeds included the IβIII break systems, sizing system, scratch system, 1β3 reduction systems. When studying physico-chemical and biochemical indicators, it was found that the protein-fat concentrate was close to the corresponding indicators of wheat flour by mechanical characteristics. A significant proportion of the albumin-globulin fraction of soluble proteins (88%), as well as the high content of the most deficient essential Ξ±-linolenic acid (6.11% compared to 0.05% in wheat flour with regard to the total fat content) suggest the high nutritional and biological value of the obtained product. Evaluation of an effect of the protein-fat concentrate on the indicators of the finished products (crackers) showed that its introduction in an amount of 15% of the total flour volume not only did not worsen but even improved sensory indices by several criteria. The high total sensory score (32 points) indicates the standard quality of the obtained product. Addition of lentil-flax flour in an amount of 15% of total flour weight in production of bakery products as well as bakery confectionary products will allow extending the assortment of balanced farinaceous products, significantly reducing the deficiency of essential Ξ±-linolenic acid in diets upon their consumption according to the physiological norms.ΠΡΠ΅Π½ΠΈΡΠ½Π°Ρ ΠΌΡΠΊΠ°, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΌΡΠΊΠ° Π²ΡΡΡΠΈΡ
ΡΠΎΡΡΠΎΠ², Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±Π΅Π΄Π½Π΅Π½Π° ΠΌΠ°ΠΊΡΠΎ-, ΠΌΠΈΠΊΡΠΎΠ½ΡΡΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ ΠΈΒ ΡΠ°ΠΊΠΈΠΌΠΈ ΡΠ΅Π½Π½ΡΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡΠ΅ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΡ, ΡΡΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΆΠΈΡΠ½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ, Π²ΠΈΡΠ°ΠΌΠΈΠ½Ρ, ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π°, ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΠ΅ ΠΈΒ Π½Π΅ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΠ΅ ΠΏΠΈΡΠ΅Π²ΡΠ΅ Π²ΠΎΠ»ΠΎΠΊΠ½Π°. Π‘Β ΡΠ΅Π»ΡΡ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π½ΠΈΡΠ½ΠΎΠΉ ΠΌΡΠΊΠΈ Π±ΡΠ»Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½Π°Ρ ΠΌΡΠΊΠ° (Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°Ρ) ΡΒ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π±Π΅Π»ΠΊΠ° (27,5%) ΠΈΒ ΠΆΠΈΡΠ° (11,9%). Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡ
Π΅ΠΌΠ° ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠΎΠ»Π° ΡΠ΅ΠΌΡΠ½ ΡΠ΅ΡΠ΅Π²ΠΈΡΡ (67%) ΠΈΒ Π»ΡΠ½Π° (33%) Π²ΠΊΠ»ΡΡΠ°Π»Π° IβIII Π΄ΡΠ°Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠ»ΠΈΡΠΎΠ²ΠΎΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ, Π²ΡΠΌΠΎΠ»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ, 1β3 ΡΠ°Π·ΠΌΠΎΠ»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ. ΠΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
, Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°Ρ Π±ΡΠ» Π±Π»ΠΈΠ·ΠΎΠΊ ΠΊΒ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ ΠΏΡΠ΅Π½ΠΈΡΠ½ΠΎΠΉ ΠΌΡΠΊΠΈ. ΠΠ½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π΄ΠΎΠ»Ρ Π°Π»ΡΠ±ΡΠΌΠΈΠ½ΠΎ-Π³Π»ΠΎΠ±ΡΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΡΡΠ°ΠΊΡΠΈΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
Π±Π΅Π»ΠΊΠΎΠ² (88%), Π°Β ΡΠ°ΠΊΠΆΠ΅ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π΄Π΅ΡΠΈΡΠΈΡΠ½ΠΎΠΉ ΡΡΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (6,11% ΠΏΡΠΎΡΠΈΠ² 0,05% Π²Β ΠΏΡΠ΅Π½ΠΈΡΠ½ΠΎΠΉ ΠΌΡΠΊΠ΅ ΡΒ ΡΡΠ΅ΡΠΎΠΌ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΆΠΈΡΠ°) ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎΒ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΠΈΡΠ΅Π²ΠΎΠΉ ΠΈΒ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π½Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°. ΠΡΠ΅Π½ΠΊΠ° Π²Π»ΠΈΡΠ½ΠΈΡ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠ° Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π³ΠΎΡΠΎΠ²ΡΡ
ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ (ΠΊΡΠ΅ΠΊΠ΅ΡΡ) ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, ΡΡΠΎ Π΅Π³ΠΎ Π²Π½Π΅ΡΠ΅Π½ΠΈΠ΅ Π²Β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 15% ΠΎΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΌΡΠΊΠΈ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π΅ ΡΡ
ΡΠ΄ΡΠ°Π΅Ρ, Π°Β ΠΏΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΌ ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌ Π΄Π°ΠΆΠ΅ ΡΠ»ΡΡΡΠ°Π΅Ρ ΠΎΡΠ³Π°Π½ΠΎΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ. ΠΡΡΠΎΠΊΠ°Ρ ΡΡΠΌΠΌΠ°ΡΠ½Π°Ρ ΠΎΡΠ³Π°Π½ΠΎΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ΅Π½ΠΊΠ° (32 Π±Π°Π»Π»Π°) ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΒ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°. ΠΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ 15% ΡΠ΅ΡΠ΅Π²ΠΈΡΠ½ΠΎ-Π»ΡΠ½ΡΠ½ΠΎΠΉ ΠΌΡΠΊΠΈ ΠΎΡ ΠΎΠ±ΡΠ΅ΠΉ ΠΌΠ°ΡΡΡ ΠΌΡΠΊΠΈ ΠΏΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ Ρ
Π»Π΅Π±ΠΎΠ±ΡΠ»ΠΎΡΠ½ΡΡ
ΠΈΒ ΠΌΡΡΠ½ΡΡ
ΠΊΠΎΠ½Π΄ΠΈΡΠ΅ΡΡΠΊΠΈΡ
ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΡΠ°ΡΡΠΈΡΠΈΡΡ Π°ΡΡΠΎΡΡΠΈΠΌΠ΅Π½Ρ ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΡΡΠ½ΡΡ
ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ, ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ Π΄Π΅ΡΠΈΡΠΈΡ ΡΡΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Π²Β ΡΠ°ΡΠΈΠΎΠ½Π΅ ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΏΡΠΈ ΠΈΡ
ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΠΈ Π²Β ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ ΡΒ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π½ΠΎΡΠΌΠ°ΠΌΠΈ
STATENESS OF POSTSOVIET TERRITORIAL POLITIES
Abstract: All post-soviet states face stateness problems, that is why itβs important to reveal their preconditions. The article distinguishes the main factors of state formation in the post-USSR states determining the similarities and differences in the governance problems, the effectiveness of state institutions and rational use of resources. The similarities are explained through the specific nature of post-imperial transition with problems of state and nation-building on top. The differences are determined by the following factors: inclusion into international structures, the number of competing internal and external centers and the degree of tension between centers and cultural-ethnic, regional and economic peripheries, the institutional legacies, the traditions of statehood, resource presence and the degree of political regime consolidation
Ethnic minorities and nation-building in the post-Soviet space: Constructing a theoretical framework
Divisions over recognition of Kosovo, Abkhazia and South Ossetiaβs independence put in focus policies towards ethnic minorities, structuring and legitimization of power in newly-formed multi-ethnic states. In most cases state-building requires the homogenization of population, i.e. βnationalizingβ policies of both exclusion and inclusion. The relevant European experience has been conceptualized by political scientists examining the key parameters of βnationalizingβ policies used in respect of ethnic minorities as well as the influence of centre-periphery polarity and different ways of political control maintenance on the process of state- and nation-building. Applying these approaches to the post-Soviet realities the authors offer a theoretical framework for analyzing grounds, forms and consequences of the politicization of ethnicity and evaluation of possible stability/instability, including secessions, bringing a realistic perspective to bear on what is happening and what can be done