30 research outputs found

    BIOCONVERSION OF SECONDARY PRODUCTS OF PROCESSING OF GRAIN CEREALS CROPS

    Get PDF
    A method has been developed for the production of organic ingredients from secondary products resulting from the high-quality grinding of triticale and wheat into flour, which involves the enzymatic action of amylolytic enzymes to release starch polysaccharides while preserving the native properties of dietary fibers and biologically active substances associated with them. To a large extent, the features of the properties of the obtained ingredients are due to the number and composition of the components of dietary fiber of grain, as well as the morphological features of their structure. It is shown that the viscosity of aqueous colloidal systems at a concentration of soluble dietary fiber of the ingredient 0.5 % increases 11 times; at a concentration of 1.0 % Β  β€” 30 times, forming a viscous gel-like structure. This allows them to be used for gelling, thickening and stabilization of aquatic food systems. The use of ingredients with a high content of NLP in baking is possible only taking into account their water absorption capacity. A method for the enzymatic modification of secondary products of processing of grain triticale was developed. On the basis of the study of the kinetics and efficiency of the effect of proteolytic and cellulolytic enzyme preparations (EP) and their compositions, optimal conditions for enzymatic modification (the EP dosage is 0.5…0.75 units of PA/g of bran, 0.3…0.4 units of CA/g of bran, the optimum temperature is 40–50 Β°Π‘, pH is 5.0 and 3.5, the duration of reactions is 1.5 hours) have been determined. The use of cellulolytic EP allowed to increase the amount of reducing substances and soluble protein by 1.5–2.5 times in comparison with the control sample. The biomodified bran obtained using the MEC Β«Shearzyme 500 LΒ» + Β«Neutrase 1.5 MGΒ» and Β«Viscoferm LΒ» + Β«Distizym Protacid ExtraΒ» has a high degree of hydrolysis of non-starch polysaccharides and proteins, is characterized by a certain ratio of high-, medium-, low-molecular peptides and amino acids, has different functional and technological properties. They can be used in the production of a wide range of general-purpose, functional and treatmentand-prophylactic food products.A method has been developed for the production of organic ingredients from secondary products resulting from the high-quality grinding of triticale and wheat into flour, which involves the enzymatic action of amylolytic enzymes to release starch polysaccharides while preserving the native properties of dietary fibers and biologically active substances associated with them. To a large extent, the features of the properties of the obtained ingredients are due to the number and composition of the components of dietary fiber of grain, as well as the morphological features of their structure. It is shown that the viscosity of aqueous colloidal systems at a concentration of soluble dietary fiber of the ingredient 0.5 % increases 11 times; at a concentration of 1.0 % Β  β€” 30 times, forming a viscous gel-like structure. This allows them to be used for gelling, thickening and stabilization of aquatic food systems. The use of ingredients with a high content of NLP in baking is possible only taking into account their water absorption capacity. A method for the enzymatic modification of secondary products of processing of grain triticale was developed. On the basis of the study of the kinetics and efficiency of the effect of proteolytic and cellulolytic enzyme preparations (EP) and their compositions, optimal conditions for enzymatic modification (the EP dosage is 0.5…0.75 units of PA/g of bran, 0.3…0.4 units of CA/g of bran, the optimum temperature is 40–50 Β°Π‘, pH is 5.0 and 3.5, the duration of reactions is 1.5 hours) have been determined. The use of cellulolytic EP allowed to increase the amount of reducing substances and soluble protein by 1.5–2.5 times in comparison with the control sample. The biomodified bran obtained using the MEC Β«Shearzyme 500 LΒ» + Β«Neutrase 1.5 MGΒ» and Β«Viscoferm LΒ» + Β«Distizym Protacid ExtraΒ» has a high degree of hydrolysis of non-starch polysaccharides and proteins, is characterized by a certain ratio of high-, medium-, low-molecular peptides and amino acids, has different functional and technological properties. They can be used in the production of a wide range of general-purpose, functional and treatmentand-prophylactic food products

    CHANGES OF THE OPTICAL PROPERTIES OF TOP-GRADE FLOUR (SEMOLINA) FROM DURUM WHEAT DURING ITS RIPENING

    Get PDF
    Using the rapid method of digital image analysis by the developed scanning flour analyzer the optical properties of flour (semolina) obtained in laboratory and production conditions from durum wheat of three years of harvest (2017–2019), namely the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum, were determined. The semolina color was also evaluated by the Konica Minolta CR-410 colorimeter. It is established that the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum did not change within the first 5 to 6 days after grinding. The change of these indicators for all the samples is observed in the period from 6 to 20 days after grinding, there with the Β«yellownessΒ» indicator decreased by 25 to 40 relative units, the color characteristic in the blue part of the spectrum increased on average by 133,75 relative units. Over the next three months, there was no change of color (by both indicators). In the course of experimental work the optical properties change depending upon carotenoids content of flour (semolina) during its ripening was shown. The correlation dependence between the Β«yellownessΒ» indicator of flour (semolina) and its carotenoids content is characterized by a high approximation coefficient. The dependence of the color characteristic of flour in the blue part of the spectrum on the content of carotenoids is characterized by an approximation coefficient equal to 0.9358, and is described as a polynomial equation. It shows, that with a low carotenoid content, the considered indicator is higher by an average of 1100 relative units compared to the color of samples with a carotenoid content from 0.70 to 1.21 mcg/g. At that during storage the optical properties of flour variety with the lowest carotenoids content remained practically the same. During 78 days of storage, there was no significant change of color characteristics of the industrial flour samples, studied from the eleventh day after grinding β€” 5–8 times higher than the average repeatability of the measurement results.Using the rapid method of digital image analysis by the developed scanning flour analyzer the optical properties of flour (semolina) obtained in laboratory and production conditions from durum wheat of three years of harvest (2017–2019), namely the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum, were determined. The semolina color was also evaluated by the Konica Minolta CR-410 colorimeter. It is established that the Β«yellownessΒ» indicator and the color characteristic in the blue part of the spectrum did not change within the first 5 to 6 days after grinding. The change of these indicators for all the samples is observed in the period from 6 to 20 days after grinding, there with the Β«yellownessΒ» indicator decreased by 25 to 40 relative units, the color characteristic in the blue part of the spectrum increased on average by 133,75 relative units. Over the next three months, there was no change of color (by both indicators). In the course of experimental work the optical properties change depending upon carotenoids content of flour (semolina) during its ripening was shown. The correlation dependence between the Β«yellownessΒ» indicator of flour (semolina) and its carotenoids content is characterized by a high approximation coefficient. The dependence of the color characteristic of flour in the blue part of the spectrum on the content of carotenoids is characterized by an approximation coefficient equal to 0.9358, and is described as a polynomial equation. It shows, that with a low carotenoid content, the considered indicator is higher by an average of 1100 relative units compared to the color of samples with a carotenoid content from 0.70 to 1.21 mcg/g. At that during storage the optical properties of flour variety with the lowest carotenoids content remained practically the same. During 78 days of storage, there was no significant change of color characteristics of the industrial flour samples, studied from the eleventh day after grinding β€” 5–8 times higher than the average repeatability of the measurement results

    TECHNOLOGICAL SCHEMES FOR THE PROCESSES OF PREPARATION AND MILLING BINARY GRAIN MIXTURES AND BIOCHEMICAL EVALUATION OF PRODUCED PRODUCTS

    Get PDF
    A study of the preparation and milling of a grain mixture containing 7% of flax seeds has been carried out in order to obtain a composite wheat-flax flour, in which the entire biopotential of flax seeds was preserved. It was revealed that the preparation of the components of the grain mixture should be carried out independently, in parallel flows. During the wheat grain preparation the cold conditioning was carried out, the modes of which were the following: humidityΒ β€” 15.5%, dwell time in the waterΒ β€” 24 hours. The optimal conditions for milling the wheat-flax mixture have been determined, which are the following: yield (%) / ash content (%) in 3 break systems (inΒ terms of the 1st break systemΒ β€” grain) for the first break systemΒ β€” 53.5 / 1.00; for the second break system.Β β€” 22.2 / 1.11; totally for the first and the second break systemsΒ β€” 75.7 / 1.035; totally for the first, the second and the third break systemsΒ β€” 81.0 / 1.1. The technological schemes have been developed and the new varieties of wheat-flax flour with predetermined technological properties and increased nutritional value have been formed. The approximate indices of yield and quality of the new wheat-flax flour varieties are the following: Flour AΒ β€” yield 45–50%, lipids 3.6–4.0%, protein 13–13.5%, ash 0.55–0.70%, whitenessΒ β€” 50 conventional units; Flour BΒ β€” yield 20–25%, lipids 5.5–6.0%, protein 14–14.5%, ash 0.9–1.25%, whitenessΒ β€” 22 conventional units; Flour CΒ β€” yield 70–75%, lipids 4.5–5.0%, protein 13.6–14.0%, ash 0.75–0.90%, whitenessΒ β€” 36 conventional units. It was indicated that the total lipids content in flour from two-component mixtures increases by about 4 times, and the total protein content in the studied samples increases by 1–2%. The content of linoleic acid (ɷ‑6) in wheat-flax flour samples is 1.6…3.3 times higher than in wheat flour; the content of linolenic acid (ɷ‑3) in wheat-flax flour samples is 36.8…57.2 times higher than in wheat flour (taking into account the total lipids content in the samples). The enrichment of wheat flour due to flax seeds allows to make up the deficiency of PUFA family in the diet of a modern person and to obtain products on a grain basis of a balanced composition

    К вопросу опрСдСлСния гликСмичСского индСкса ΠΏΠΎ глюкозС

    Get PDF
    The analysis of methods for determining the glycemic index (GI) of food products in vivo and in vitro. The authors note that the difference in the methodological approach to the determination of GI in vitro leads to obtaining results that are difficult to compare. A modified method for determining the GI for glucose is proposed, which is based on the method for determining the glycemic index for glucose, which makes it possible to assess the digestibility of various ingredients in products in terms of sugar load, and to calculate the glycemic index for glucose formed in the process of "digestion” of the test product in vitro. The modified technique provides for the use of digestive enzyme preparations: Acedin-pepsin and Panzinorm to provide a deeper "digestion” in vitro, providing a deep degree of hydrolysis of the main macronutrients in in vitro model experiments. The conditions for carrying out enzymatic hydrolysis reactions (temperature, pH, reaction duration) were selected experimentally. The studies carried out to determine the GI in vitro, according to the proposed method, showed comparable values, which indicates the possibility of using this method for the determination of GI in vitro. The results obtained should be considered as indicative, since the authors adhere to the position that the true value of the GI index can only be determined by blood analysis. But in this case, the value of GI is influenced by many factors, including the individual characteristics of the human organism.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² опрСдСлСния гликСмичСского индСкса (Π“Π˜) ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² in vivo ΠΈ in vitro. Авторы ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Π½ΠΈΡ†Π° Π² мСтодичСском ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π“Π˜ in vitro ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ, Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ сопоставимых Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модифицированная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния Π“Π˜ in vitro Π² основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния гликСмичСского индСкса ΠΏΠΎ глюкозС, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния сахарной Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΡƒΡΠ²ΠΎΡΠ΅ΠΌΠΎΡΡ‚ΡŒ Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ гликСмичСский индСкс ΠΏΠΎ глюкозС, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅ΠΉΡΡ Π² процСссС «пСрСваривания» исслСдуСмого ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° in vitro. ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° прСдусматриваСт использованиС для обСспСчСния Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ «пСрСваривания» in vitro ΠΏΠΈΡ‰Π΅Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²: АцСдин-пСпсин ΠΈ ΠŸΠ°Π½Π·ΠΈΠ½ΠΎΡ€ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… экспСримСнтах in vitro Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° основных ΠΌΠ°ΠΊΡ€ΠΎΠ½ΡƒΡ‚Ρ€ΠΈΠ΅Π½Ρ‚ΠΎΠ². Условия провСдСния Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° (Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°, рН, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ) Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π“Π˜ in vitro, согласно ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ сопоставимыС значСния, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ возмоТности использования Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ для опрСдСлСния Π“Π˜ in vitro. Однако, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ слСдуСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π°Π²Ρ‚ΠΎΡ€Ρ‹ ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ показатСля Π“Π˜ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ лишь ΠΏΠΎ Π°Π½Π°Π»ΠΈΠ·Ρƒ ΠΊΡ€ΠΎΠ²ΠΈ, Π½ΠΎ ΠΈ Π² этом случаС Π½Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π“Π˜ влияСт мноТСство Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π² Ρ‚ΠΎΠΌ числС ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ особСнности ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

    ΠžΡ‚Ρ€ΡƒΠ±ΠΈ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΉ зСрносмСси ΠΊΠ°ΠΊ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π§Π°ΡΡ‚ΡŒ 2. Π£Π³Π»Π΅Π²ΠΎΠ΄Π½ΠΎ-Π°ΠΌΠΈΠ»Π°Π·Π½Ρ‹ΠΉ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹ΠΉ комплСксы

    Get PDF
    Polycomponent bran obtained by joint grinding of a grain mixture from cereals (wheat), legumes (lentils) and oilseeds (flax) should be considered as a valuable secondary raw material, the use of which for deep processing will make it possible to obtain various food and feed ingredients. An assessment of the carbohydrate-amylase and lipid complexes of the three variants of multicomponent bran showed that the ratio of amylose and amylopectin in the starch of three-component bran is almost the same, however, in lentil-flax bran, the proportion of amylose is 1.6 times higher than in the first two variants. The specific activity of amylases in three-component bran is about 2 times higher than in lentil-flax bran. In addition, the latter are characterized by a higher content of reducing sugars and fiber. The molecular weight of amylases isolated from three-component bran, according to gel chromatography, was: Ξ±-amylase β€” 40,000 Da; Ξ²-amylase β€” 60,000 Da. It has been established that the addition of flax seeds to the grinding mixture significantly increases the fat content in bran 6.4; 6.0 and 12.9%. The fatty acid composition of the studied bristles is characterized by the predominance of unsaturated fatty acids. At the same time, the ratio of essential acids β€” linoleic acid (ɷ‑6) to Ξ±-linolenic acid (ɷ‑3) in favor of the most deficient Ξ±-linolenic acid β€” was typical for lentil-flax bran and amounted to 1:4.2. The activity of alkaline lipases, which exhibit their effect at pH 8.0 (mainly cereal lipases), and acid lipases (mainly oilseed lipases) with an optimum of action at pH 4.7 in three-component bran samples are approximately the same, and lentil-flax bran is characterized by a high specific acid lipase activity, which is approximately 4.2 times higher than the activity of acid lipases of three-component bran. The data obtained, along with data on the characteristics of the protein-proteinase complex of the studied types of bran, will be used in the development of methods for enzymatic modification (deep processing) and in the preparation of components for the creation of new food products with increased nutritional and biological value.ΠŸΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Π΅ ΠΎΡ‚Ρ€ΡƒΠ±ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ совмСстном Ρ€Π°Π·ΠΌΠΎΠ»Π΅ зСрносмСси ΠΈΠ· Π·Π΅Ρ€Π½ΠΎΠ²Ρ‹Ρ… (ΠΏΡˆΠ΅Π½ΠΈΡ†Π°), Π±ΠΎΠ±ΠΎΠ²Ρ‹Ρ… (Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ†Π°) ΠΈ масличных (Π»Π΅Π½) ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€, слСдуСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ†Π΅Π½Π½ΠΎΠ΅ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠ΅ ΡΡ‹Ρ€ΡŒΠ΅, использованиС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ для Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΈΡ‰Π΅Π²Ρ‹Π΅ ΠΈ ΠΊΠΎΡ€ΠΌΠΎΠ²Ρ‹Π΅ ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚Ρ‹. ΠžΡ†Π΅Π½ΠΊΠ° ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎ-Π°ΠΌΠΈΠ»Π°Π·Π½ΠΎΠ³ΠΎ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ комплСксов Ρ‚Ρ€Π΅Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΈΠ»ΠΎΠ·Ρ‹ ΠΈ Π°ΠΌΠΈΠ»ΠΎΠΏΠ΅ΠΊΡ‚ΠΈΠ½Π° Π² ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π΅ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ практичСски ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-Π»ΡŒΠ½ΡΠ½Ρ‹Ρ… отрубях доля Π°ΠΌΠΈΠ»ΠΎΠ·Ρ‹ Π² 1,6 Ρ€Π°Π·Π° Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π² ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ…. УдСльная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π°ΠΌΠΈΠ»Π°Π· Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² 2 Ρ€Π°Π·Π° Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π² Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-Π»ΡŒΠ½ΡΠ½Ρ‹Ρ… отрубях. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, послСдниС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ высоким содСрТаниСм Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… сахаров ΠΈ ΠΊΠ»Π΅Ρ‚Ρ‡Π°Ρ‚ΠΊΠΈ. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ масса Π°ΠΌΠΈΠ»Π°Π·, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ, ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ гСль-Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ составила: Ξ±-Π°ΠΌΠΈΠ»Π°Π·Π° β€” 40 000 Π”Π°; Ξ²-Π°ΠΌΠΈΠ»Π°Π·Π° β€” 60 000 Π”Π°. УстановлСно, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ сСмян льна Π² ΠΏΠΎΠΌΠΎΠ»ΡŒΠ½ΡƒΡŽ смСсь Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ содСрТаниС ΠΆΠΈΡ€Π° Π² отрубях 6,4; 6,0 ΠΈ 12,9%. Жирнокислотный состав исслСдуСмых ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ характСризуСтся ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ нСнасыщСнных ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот. ΠŸΡ€ΠΈ этом ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… кислот β€” Π»ΠΈΠ½ΠΎΠ»Π΅Π²ΠΎΠΉ кислоты (Ι·-6) ΠΊ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ кислотС (Ι·-3) Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π½ΠΎΠΉ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ кислоты β€” Π±Ρ‹Π»ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ для Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-Π»ΡŒΠ½ΡΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ ΠΈ составило 1:4,2. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‰Π΅Π»ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠΏΠ°Π·, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‰ΠΈΡ… своС дСйствиС ΠΏΡ€ΠΈ рН 8,0 (прСимущСствСнно Π·Π΅Ρ€Π½ΠΎΠ²Ρ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹), ΠΈ кислых Π»ΠΈΠΏΠ°Π· (прСимущСствСнно Π»ΠΈΠΏΠ°Π·Ρ‹ масличных ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€) с ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΠΎΠΌ дСйствия ΠΏΡ€ΠΈ рН 4,7 Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ одинаковая, Π° Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-Π»ΡŒΠ½ΡΠ½Ρ‹Π΅ ΠΎΡ‚Ρ€ΡƒΠ±ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ высокой ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ кислой Π»ΠΈΠΏΠ°Π·Ρ‹, которая ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² 4,2 Ρ€Π°Π·Π° прСвосходит Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ кислых Π»ΠΈΠΏΠ°Π· Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, наряду с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎ особСнностям Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Π½ΠΎΠ³ΠΎ комплСкса исслСдуСмых Π²ΠΈΠ΄ΠΎΠ² ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ, Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ способов Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ (глубокая ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°) ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² для создания Π½ΠΎΠ²Ρ‹Ρ… ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΈ биологичСской Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ

    ΠžΡ‚Ρ€ΡƒΠ±ΠΈ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΉ зСрносмСси β€” ΠΊΠ°ΠΊ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π§Π°ΡΡ‚ΡŒ 1. Π‘Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Π½Ρ‹ΠΉ комплСкс

    Get PDF
    Deep processing of grain bran is an important, promising direction that allows the use of by-products (secondary products) of flour milling in order to obtain valuable food components for the creation of enriched food products, as well as specialized grain-based products. Polycomponent bran, obtained during the joint processing of cereals (wheat), legumes (lentils) and oilseeds (flax), in terms of its chemical composition and the state of the proteinproteinase complex, is a unique raw material that can be used for further processing. In particular, it is suitable for the use in producing hydrolysates and other structurally modified products using enzymatic biocatalytic methods. An assessment of the chemical composition and biochemical characteristics of new types of bran showed a high protein content, in which the proportion of the albumin-globulin fraction predominated (78.5-86%), while a significant part of the protein (7.6-10%) was strongly bonded to other biopolymers. The bran proteolytic enzymes acting in the neutral (pH 6.8) and acidic (pH 3.8) pH zones were isolated and studied. It was shown that lentil-flax bran was characterized by the highest proteolytic activity, while the activity of neutral proteinases exceeded the activity of acid proteinases in all three variants: 1.32, 1.37 and 1.56 times, respectively. It was established that protein inhibitors of trypsin and their own proteinases were present in all studied bran types. They inhibited the activity of acid proteinases to a greater extent than neutral ones (% inhibition): 37.5 versus 28.2 (option 1); 32.3 versus 24.5 (option 2); 48.6 versus 32.4 (option 3). The molecular weight, according to gel chromatography, was as follows: neutral proteinases 250,000 200,000 Da, acid proteinases 100,000 75,000 Da. Protein inhibitors isolated from multicomponent bran had a molecular weight of 25,000-20,000 Da. The data obtained will be used in experimental studies on targeted biocatalysis in order to obtain products of a given composition and properties.Глубокая ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π·Π΅Ρ€Π½ΠΎΠ²Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ β€” Π²Π°ΠΆΠ½ΠΎΠ΅, пСрспСктивноС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Π΅ (Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Π΅) ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ ΠΌΡƒΠΊΠΎΠΌΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ производства с Ρ†Π΅Π»ΡŒΡŽ получСния Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² для создания ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ спСциализированных ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π½Π° Π·Π΅Ρ€Π½ΠΎΠ²ΠΎΠΉ основС. ΠŸΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Π΅ ΠΎΡ‚Ρ€ΡƒΠ±ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ совмСстной ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π·Π΅Ρ€Π½ΠΎΠ²Ρ‹Ρ… (ΠΏΡˆΠ΅Π½ΠΈΡ†Π°), Π±ΠΎΠ±ΠΎΠ²Ρ‹Ρ… (Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ†Π°) ΠΈ масличных (Π»Π΅Π½) ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€, ΠΏΠΎ своСму химичСскому составу ΠΈ ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Π½ΠΎΠ³ΠΎ комплСкса ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡΡ‹Ρ€ΡŒΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для дальнСйшСй ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π’ частности, ΠΎΠ½ΠΎ ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½ΠΎ для примСнСния с Ρ†Π΅Π»ΡŒΡŽ получСния Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π°Ρ‚ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… структурно-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°. ΠžΡ†Π΅Π½ΠΊΠ° химичСского состава ΠΈ биохимичСских особСнностСй Π½ΠΎΠ²Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° высокоС содСрТаниС Π±Π΅Π»ΠΊΠ°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ доля Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½ΠΎ-Π³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ (78,5-86%), ΠΏΡ€ΠΈ этом сущСствСнная Ρ‡Π°ΡΡ‚ΡŒ Π±Π΅Π»ΠΊΠ° (7,6-10%) ΠΏΡ€ΠΎΡ‡Π½ΠΎ связана с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ исслСдованы протСолитичСскиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ (рН 6,8) ΠΈ кислой (рН 3,8) Π·ΠΎΠ½Π°Ρ… рН. Показано, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-Π»ΡŒΠ½ΡΠ½Ρ‹Π΅ ΠΎΡ‚Ρ€ΡƒΠ±ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ наибольшСй протСолитичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΏΡ€ΠΈ этом Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π· ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ кислых ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π· Π²ΠΎ всСх Ρ‚Ρ€Π΅Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ…: Π² 1,32; 1,37 ΠΈ 1,56 Ρ€Π°Π·Π° соотвСтствСнно. УстановлСно, Ρ‡Ρ‚ΠΎ Π²ΠΎ всСх исслСдуСмых отрубях ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Π΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ трипсина ΠΈ собствСнных ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·. Они ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ кислых ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π· Π² большСй стСпСни, Ρ‡Π΅ΠΌ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… (% ингибирования): 37,5 ΠΏΡ€ΠΎΡ‚ΠΈΠ² 28,2 (Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ 1); 32,3 ΠΏΡ€ΠΎΡ‚ΠΈΠ² 24,5 (Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ 2); 48,6 ΠΏΡ€ΠΎΡ‚ΠΈΠ² 32,4 (Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ 3). ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ масса, ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ гСль-Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, составила: Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Ρ‹ 250 000 200 000 Π”Π°, кислыС ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Ρ‹ 100 000 75 000 Π”Π°. Π‘Π΅Π»ΠΊΠΎΠ²Ρ‹Π΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€ΡƒΠ±Π΅ΠΉ, ΠΈΠΌΠ΅Π»ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ массу 25 000 20 000 Π”Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдованиях, ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΌΡƒ Π±ΠΈΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Ρƒ с Ρ†Π΅Π»ΡŒΡŽ получСния ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ состава ΠΈ свойств

    Π‘Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ для обогащСния ΠΏΡˆΠ΅Π½ΠΈΡ‡Π½ΠΎΠΉ ΠΌΡƒΠΊΠΈ.

    Get PDF
    Wheat flour, especially high grade flour, is significantly impoverished in macro-, micronutrients and other valuable components such as essential amino acids, essential fatty acids, vitamins, minerals, soluble and insoluble dietary fibers. To enrich wheat flour, the authors produced lentil-flax flour (protein-fat concentrate) with the high protein (27.5%) and fat (11.9%) content. The developed technological scheme of the combined grinding of lentil (67%) and flax (33%) seeds included the I–III break systems, sizing system, scratch system, 1–3 reduction systems. When studying physico-chemical and biochemical indicators, it was found that the protein-fat concentrate was close to the corresponding indicators of wheat flour by mechanical characteristics. A significant proportion of the albumin-globulin fraction of soluble proteins (88%), as well as the high content of the most deficient essential Ξ±-linolenic acid (6.11% compared to 0.05% in wheat flour with regard to the total fat content) suggest the high nutritional and biological value of the obtained product. Evaluation of an effect of the protein-fat concentrate on the indicators of the finished products (crackers) showed that its introduction in an amount of 15% of the total flour volume not only did not worsen but even improved sensory indices by several criteria. The high total sensory score (32 points) indicates the standard quality of the obtained product. Addition of lentil-flax flour in an amount of 15% of total flour weight in production of bakery products as well as bakery confectionary products will allow extending the assortment of balanced farinaceous products, significantly reducing the deficiency of essential Ξ±-linolenic acid in diets upon their consumption according to the physiological norms.ΠŸΡˆΠ΅Π½ΠΈΡ‡Π½Π°Ρ ΠΌΡƒΠΊΠ°, особСнно ΠΌΡƒΠΊΠ° Π²Ρ‹ΡΡˆΠΈΡ… сортов, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ±Π΅Π΄Π½Π΅Π½Π° ΠΌΠ°ΠΊΡ€ΠΎ-, ΠΌΠΈΠΊΡ€ΠΎΠ½ΡƒΡ‚Ρ€ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΈΒ Ρ‚Π°ΠΊΠΈΠΌΠΈ Ρ†Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ, ΠΊΠ°ΠΊ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡ‹Π΅ аминокислоты, ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΆΠΈΡ€Π½Ρ‹Π΅ кислоты, Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Ρ‹, ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ вСщСства, растворимыС ΠΈΒ  нСрастворимыС ΠΏΠΈΡ‰Π΅Π²Ρ‹Π΅ Π²ΠΎΠ»ΠΎΠΊΠ½Π°. Π‘Β  Ρ†Π΅Π»ΡŒΡŽ обогащСния ΠΏΡˆΠ΅Π½ΠΈΡ‡Π½ΠΎΠΉ ΠΌΡƒΠΊΠΈ Π±Ρ‹Π»Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-льняная ΠΌΡƒΠΊΠ° (Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚) с высоким содСрТаниСм Π±Π΅Π»ΠΊΠ° (27,5%) ΠΈΒ ΠΆΠΈΡ€Π° (11,9%). Разработанная тСхнологичСская схСма совмСстного Ρ€Π°Π·ΠΌΠΎΠ»Π° сСмян Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ†Ρ‹ (67%) и льна (33%) Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° I–III Π΄Ρ€Π°Π½Ρ‹Π΅ систСмы, ΡˆΠ»ΠΈΡ„ΠΎΠ²ΠΎΡ‡Π½ΡƒΡŽ систСму, Π²Ρ‹ΠΌΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму, 1–3 Ρ€Π°Π·ΠΌΠΎΠ»ΡŒΠ½Ρ‹Π΅ систСмы. ΠŸΡ€ΠΈ исслСдовании Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских, биохимичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ установлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎ мСханичСским характСристикам Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ Π±Ρ‹Π» Π±Π»ΠΈΠ·ΠΎΠΊ ΠΊΒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ показатСлям ΠΏΡˆΠ΅Π½ΠΈΡ‡Π½ΠΎΠΉ ΠΌΡƒΠΊΠΈ. Π—Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ доля Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½ΠΎ-Π³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ растворимых Π±Π΅Π»ΠΊΠΎΠ² (88%), Π°Β Ρ‚Π°ΠΊΠΆΠ΅ высокоС содСрТаниС Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π½ΠΎΠΉ ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ кислоты (6,11% ΠΏΡ€ΠΎΡ‚ΠΈΠ² 0,05% Π²Β ΠΏΡˆΠ΅Π½ΠΈΡ‡Π½ΠΎΠΉ ΠΌΡƒΠΊΠ΅ с учСтом ΠΎΠ±Ρ‰Π΅Π³ΠΎ содСрТания ΠΆΠΈΡ€Π°) ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ о высокой ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ и биологичСской цСнности ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°. ΠžΡ†Π΅Π½ΠΊΠ° влияния Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-ΠΆΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚Π° Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π³ΠΎΡ‚ΠΎΠ²Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ (ΠΊΡ€Π΅ΠΊΠ΅Ρ€Ρ‹) ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ внСсСниС в количСствС 15% ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ объСма ΠΌΡƒΠΊΠΈ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ ΡƒΡ…ΡƒΠ΄ΡˆΠ°Π΅Ρ‚, Π°Β ΠΏΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ критСриям Π΄Π°ΠΆΠ΅ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ органолСптичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ. Высокая суммарная органолСптичСская ΠΎΡ†Π΅Π½ΠΊΠ° (32 Π±Π°Π»Π»Π°) ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ о стандартном качСствС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°. Π”ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ 15% Ρ‡Π΅Ρ‡Π΅Π²ΠΈΡ‡Π½ΠΎ-льняной ΠΌΡƒΠΊΠΈ ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅ΠΉ массы ΠΌΡƒΠΊΠΈ ΠΏΡ€ΠΈ производствС Ρ…Π»Π΅Π±ΠΎΠ±ΡƒΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΈΒ ΠΌΡƒΡ‡Π½Ρ‹Ρ… кондитСрских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ассортимСнт сбалансированных ΠΌΡƒΡ‡Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ, сущСствСнно ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ξ±-Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ кислоты Π²Β Ρ€Π°Ρ†ΠΈΠΎΠ½Π΅ питания ΠΏΡ€ΠΈ ΠΈΡ… ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠΈ в соотвСтствии с физиологичСскими Π½ΠΎΡ€ΠΌΠ°ΠΌΠΈ

    STATENESS OF POSTSOVIET TERRITORIAL POLITIES

    No full text
    Abstract: All post-soviet states face stateness problems, that is why it’s important to reveal their preconditions. The article distinguishes the main factors of state formation in the post-USSR states determining the similarities and differences in the governance problems, the effectiveness of state institutions and rational use of resources. The similarities are explained through the specific nature of post-imperial transition with problems of state and nation-building on top. The differences are determined by the following factors: inclusion into international structures, the number of competing internal and external centers and the degree of tension between centers and cultural-ethnic, regional and economic peripheries, the institutional legacies, the traditions of statehood, resource presence and the degree of political regime consolidation

    Ethnic minorities and nation-building in the post-Soviet space: Constructing a theoretical framework

    No full text
    Divisions over recognition of Kosovo, Abkhazia and South Ossetia’s independence put in focus policies towards ethnic minorities, structuring and legitimization of power in newly-formed multi-ethnic states. In most cases state-building requires the homogenization of population, i.e. β€œnationalizing” policies of both exclusion and inclusion. The relevant European experience has been conceptualized by political scientists examining the key parameters of β€œnationalizing” policies used in respect of ethnic minorities as well as the influence of centre-periphery polarity and different ways of political control maintenance on the process of state- and nation-building. Applying these approaches to the post-Soviet realities the authors offer a theoretical framework for analyzing grounds, forms and consequences of the politicization of ethnicity and evaluation of possible stability/instability, including secessions, bringing a realistic perspective to bear on what is happening and what can be done
    corecore