325 research outputs found

    The impact of injecting networks on hepatitis C transmission and treatment in people who inject drugs

    Get PDF
    With the development of new highly efficacious direct acting antiviral treatments (DAAs) for hepatitis C (HCV), the concept of treatment as prevention is gaining credence. To date the majority of mathematical models assume perfect mixing with injectors having equal contact with all other injectors. This paper explores how using a networks based approach to treat people who inject drugs (PWID) with DAAs affects HCV prevalence. Method: Using observational data we parameterized an Exponential Random Graph Model containing 524 nodes. We simulated transmission of HCV through this network using a discrete time, stochastic transmission model. The effect of five treatment strategies on the prevalence of HCV was investigated; two of these strategies were 1) treat randomly selected nodes and 2) “treat your friends” where an individual is chosen at random for treatment and all their infected neighbours are treated. Results: As treatment coverage increases, HCV prevalence at 10 years reduces for both the high efficacy and low efficacy treatment. Within each set of parameters, the “treat your friends” strategy performed better than the random strategy being most marked for higher efficacy treatment. For example over 10 years of treating 25 per 1000 PWID, the prevalence drops from 50% to 40% for the random strategy, and to 33% for the “treat your friends” strategy (6.5% difference, 95% CI 5.1 – 8.1%). Discussion: “Treat your friends” is a feasible means of utilising network strategies to improve treatment efficiency. In an era of highly efficacious and highly tolerable treatment such an approach will benefit not just the individual but the community more broadly by reducing the prevalence of HCV amongst PWID

    The spread of influenza A(H1N1)pdm09 in Victorian school children in 2009:iImplications for revised pandemic planning

    Full text link
    Background Victoria was the first state in Australia to experience community transmission of influenza A(H1N1)pdm09. We undertook a descriptive epidemiological analysis of the first 1,000 notified cases to describe the epidemic associated with school children and explore implications for school closure and antiviral distribution policy in revised pandemic plans. Methods Records of the first 1,000 laboratory-confirmed cases of influenza A(H1N1)pdm09 notified to the Victorian Government Department of Health between 20 May and 5 June 2009 were extracted from the state’s notifiable infectious diseases database. Descriptive analyses were conducted on case demographics, symptoms, case treatment, prophylaxis of contacts and distribution of cases in schools. Results Two-thirds of the first 1,000 cases were school-aged (5–17 years) with cases in 203 schools, particularly along the north and western peripheries of the metropolitan area. Cases in one school accounted for nearly 8% of all cases but the school was not closed until nine days after symptom onset of the first identified case. Amongst all cases, cough (85%) was the most commonly reported symptom followed by fever (68%) although this was significantly higher in primary school children (76%). The risk of hospitalisation was 2%. The median time between illness onset and notification of laboratory confirmation was four days, with only 10% of cases notified within two days of onset and thus eligible for oseltamivir treatment. Nearly 6,000 contacts were followed up for prophylaxis. Conclusions With a generally mild clinical course and widespread transmission before its detection, limited and short-term school closures appeared to have minimal impact on influenza A(H1N1)pdm09 transmission. Antiviral treatment could rarely be delivered to cases within 48 hours of symptom onset. These scenarios and lessons learned from them need to be incorporated into revisions of pandemic plans

    Hepatitis C transmission and treatment as prevention - The role of the injecting network

    Get PDF
    Background: The hepatitis C virus (HCV) epidemic is a major health issue; in most developed countries it is driven by people who inject drugs (PWID). Injecting networks powerfully influence HCV transmission. In this paper we provide an overview of 10 years of research into injecting networks and HCV, culminating in a network-based approach to provision of direct-acting antiviral therapy. Methods: Between 2005 and 2010 we followed a cohort of 413 PWID, measuring HCV incidence, prevalence and injecting risk, including network-related factors. We developed an individual-based HCV transmission model, using it to simulate the spread of HCV through the empirical social network of PWID. In addition, we created an empirically grounded network model of injecting relationships using exponential random graph models (ERGMs), allowing simulation of realistic networks for investigating HCV treatment and intervention strategies. Our empirical work and modelling underpins the TAP Study, which is examining the feasibility of community-based treatment of PWID with DAAs. Results: We observed incidence rates of HCV primary infection and reinfection of 12.8 per 100 person-years (PY) (95%CI: 7.7-20.0) and 28.8 per 100 PY (95%CI: 15.0-55.4), respectively, and determined that HCV transmission clusters correlated with reported injecting relationships. Transmission modelling showed that the empirical network provided some protective effect, slowing HCV transmission compared to a fully connected, homogenous PWID population. Our ERGMs revealed that treating PWID and all their contacts was the most effective strategy and targeting treatment to infected PWID with the most contacts the least effective. Conclusion: Networks-based approaches greatly increase understanding of HCV transmission and will inform the implementation of treatment as prevention using DAAs

    Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic: Insights from Modeling

    Get PDF
    In light of the 2009 influenza pandemic and potential future pandemics, Maria Van Kerkhove and colleagues anticipate six public health challenges and the data needed to support sound public health decision making.The authors acknowledge support from the Bill & Melinda Gates Foundation (MDVK, CF, NMF); Royal Society (CF); Medical Research Council (MDVK, CF, PJW, NMF); EU FP7 programme (NMF); UK Health Protection Agency (PJW); US National Institutes of Health Models of Infectious Disease Agent Study program through cooperative agreement 1U54GM088588 (ML); NIH Director's Pioneer Award, DP1-OD000490-01 (DS); EU FP7 grant EMPERIE 223498 (DS); the Wellcome Trust (DS); 3R01TW008246-01S1 from Fogerty International Center and RAPIDD program from Fogerty International Center with the Science & Technology Directorate, Department of Homeland Security (SR); and the Institut de Veille Sanitaire Sanitaire funded by the French Ministry of Health (J-CD). The funders played no role in the decision to submit the article or in its preparation

    A resurgence and re-emergence of diphtheria in Nigeria, 2023

    Get PDF
    [Extract] Diphtheria is a highly contagious vaccine-preventable bacterial infection caused by Corynebacterium diphtheriae that primarily infects the throat (pharynx and tonsils) and nose. The bacterium has an estimated basic reproduction number of 1.7–4.3. Although diphtheria is treatable if detected early, it can lead to severe complications such as respiratory failure, heart problems and even deaths (case-fatality ratio among untreated, never vaccinated cases 28.8–29.2%). It remains a health problem in low-resource countries, particularly where vaccination uptake and coverage are low and where sanitation conditions remain poor

    Increasing the frequency of hand washing by healthcare workers does not lead to commensurate reductions in staphylococcal infection in a hospital ward

    Get PDF
    Hand hygiene is generally considered to be the most important measure that can be applied to prevent the spread of healthcare-associated infection (HAI). Continuous emphasis on this intervention has lead to the widespread opinion that HAI rates can be greatly reduced by increased hand hygiene compliance alone. However, this assumes that the effectiveness of hand hygiene is not constrained by other factors and that improved compliance in excess of a given level, in itself, will result in a commensurate reduction in the incidence of HAI. However, several researchers have found the law of diminishing returns to apply to hand hygiene, with the greatest benefits occurring in the first 20% or so of compliance, and others have demonstrated that poor cohorting of nursing staff profoundly influences the effectiveness of hand hygiene measures. Collectively, these findings raise intriguing questions about the extent to which increasing compliance alone can further reduce rates of HAI. In order to investigate these issues further, we constructed a deterministic Ross-Macdonald model and applied it to a hypothetical general medical ward. In this model the transmission of staphylococcal infection was assumed to occur after contact with the transiently colonized hands of HCWs, who, in turn, acquire contamination only by touching colonized patients. The aim of the study was to evaluate the impact of imperfect hand cleansing on the transmission of staphylococcal infection and to identify, whether there is a limit, above which further hand hygiene compliance is unlikely to be of benefit. The model demonstrated that if transmission is solely via the hands of HCWs, it should, under most circumstances, be possible to prevent outbreaks of staphylococcal infection from occurring at a hand cleansing frequencies <50%, even with imperfect hand hygiene. The analysis also indicated that the relationship between hand cleansing efficacy and frequency is not linear - as efficacy decreases, so the hand cleansing frequency required to ensure R0<1 increases disproportionately. Although our study confirmed hand hygiene to be an effective control measure, it demonstrated that the law of diminishing returns applies, with the greatest benefit derived from the first 20% or so of compliance. Indeed, our analysis suggests that there is little benefit to be accrued from very high levels of hand cleansing and that in most situations compliance >40% should be enough to prevent outbreaks of staphylococcal infection occurring, if transmission is solely via the hands of HCWs. Furthermore we identified a non-linear relationship between hand cleansing efficacy and frequency, suggesting that it is important to maximise the efficacy of the hand cleansing process

    Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect

    Full text link
    A 2D simulation for the lateral photo-Dember effect is used to calculate the THz emission of metallic nanostructures due to ultrafast diffusion of carriers in order to realize a series of THz emitters.Comment: Corrected version of a paper given at 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz

    Understanding COVID-19 dynamics and the effects of interventions in the Philippines: A mathematical modelling study

    Get PDF
    Background: COVID-19 initially caused less severe outbreaks in many low- and middle-income countries (LMIC) compared with many high-income countries, possibly because of differing demographics, socioeconomics, surveillance, and policy responses. Here, we investigate the role of multiple factors on COVID-19 dynamics in the Philippines, a LMIC that has had a relatively severe COVID-19 outbreak. Methods: We applied an age-structured compartmental model that incorporated time-varying mobility, testing, and personal protective behaviors (through a “Minimum Health Standards” policy, MHS) to represent the first wave of the Philippines COVID-19 epidemic nationally and for three highly affected regions (Calabarzon, Central Visayas, and the National Capital Region). We estimated effects of control measures, key epidemiological parameters, and interventions. Findings: Population age structure, contact rates, mobility, testing, and MHS were sufficient to explain the Philippines epidemic based on the good fit between modelled and reported cases, hospitalisations, and deaths. The model indicated that MHS reduced the probability of transmission per contact by 13-27%. The February 2021 case detection rate was estimated at ~8%, population recovered at ~9%, and scenario projections indicated high sensitivity to MHS adherence. Interpretation: COVID-19 dynamics in the Philippines are driven by age, contact structure, mobility, and MHS adherence. Continued compliance with low-cost MHS should help the Philippines control the epidemic until vaccines are widely distributed, but disease resurgence may be occurring due to a combination of low population immunity and detection rates and new variants of concern
    corecore