702 research outputs found
Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS
Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With
increasing pressure across a critical pressure Pc, the system undergoes a
discontinuous transition into a metallic, anti-ferromagnetically ordered state.
By using a combination of thermodynamic, transport, and magnetic measurements,
we show that the pseudogap results from the formation of a local bound state
with spin singlet. We further argue that the transition Pc is regarded as a
transition from an insulating electron-hole gas to a Kondo metal, i.e., from a
spatially bound state to a Kondo virtually bound state between 4f and
conduction electrons.Comment: 5 pages, 5 figure
Phytosulfokine stimulates cell divisions in sugar beet (Beta vulgaris L.) mesophyll protoplast cultures
The aim of this work was to improve plating efficiency of sugar beet mesophyll protoplast cultures. Preliminary experiments showed that cultures of good quality, viable protoplasts were obtained in rich media based on the Kao and Michayluk formulation and with the calcium alginate as an embedding matrix. Nevertheless, in these cultures cell divisions were either not observed or very seldom confirming earlier reported recalcitrance of sugar beet protoplasts. The recalcitrant status of these cultures was reversed upon application of exogenous phytosulfokine (PSK)âa peptidyl plant growth factor. The highest effectiveness of PSK was observed at 100 nM concentration. Plating efficiencies obtained in the presence of PSK reached approximately 20% of the total cultured cells. The stimulatory effect of phytosulfokine was observed for all tested breeding stocks of sugar beet. Our data indicate that PSK is a powerful agent able to overcome recalcitrance of plant protoplast cultures
Measurement of forward photon production cross-section in proton-proton collisions at = 13 TeV with the LHCf detector
In this paper, we report the production cross-section of forward photons in
the pseudorapidity regions of and ,
measured by the LHCf experiment with proton--proton collisions at =
13 TeV. The results from the analysis of 0.191 of data
obtained in June 2015 are compared to the predictions of several hadronic
interaction models that are used in air-shower simulations for
ultra-high-energy cosmic rays. Although none of the models agree perfectly with
the data, EPOS-LHC shows the best agreement with the experimental data among
the models.Comment: 21 pages, 4 figure
Excitonic Instability in the Transition from the Black Phase to the Golden Phase of SmS under Pressure Investigated by Infrared Spectroscopy
We report the pressure-dependent optical reflectivity spectra of a strongly
correlated insulator, samarium monosulfide (SmS), in the far- and
middle-infrared regions to investigate the origin of the pressure-induced phase
transition from the black phase to the golden phase. The energy gap becomes
narrow with increasing pressure in the black phase. A valence transition from
Sm2+ in the black phase to mainly Sm3+ in the golden phase accompanied by
spectral change from insulator to metal were observed at the transition
pressure of 0.65 GPa. The black-to-golden phase transition occurs when the
energy gap size of black SmS becomes the same as the binding energy of the
exciton at the indirect energy gap before the gap closes. This result indicates
that the valence transition originates from an excitonic instability.Comment: 5 pages, 4 figures. To be published in J. Phys. Soc. Jpn. Vol. 77,
No. 1
Electronic Structure of Calcium Hexaboride within the Weighted Density Approximation
We report calculations of the electronic structure of CaB using the
weighted density approximation (WDA) to density functional theory. We find a
semiconducting band structure with a sizable gap, in contrast to local density
approximation (LDA) results, but in accord with recent experimental data. In
particular, we find an -point band gap of 0.8 eV. The WDA correction of the
LDA error in describing the electronic structure of CaB is discussed in
terms of the orbital character of the bands and the better cancelation of
self-interactions within the WDA.Comment: 1 figur
Perforated exit regions for the reduction of micro-pressure waves from tunnels
The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council (20117 00029), (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).Peer reviewedPostprin
LISA observations of massive black hole mergers: event rates and issues in waveform modelling
The observability of gravitational waves from supermassive and
intermediate-mass black holes by the forecoming Laser Interferometer Space
Antenna (LISA), and the physics we can learn from the observations, will depend
on two basic factors: the event rates for massive black hole mergers occurring
in the LISA best sensitivity window, and our theoretical knowledge of the
gravitational waveforms. We first provide a concise review of the literature on
LISA event rates for massive black hole mergers, as predicted by different
formation scenarios. Then we discuss what (in our view) are the most urgent
issues to address in terms of waveform modelling. For massive black hole binary
inspiral these include spin precession, eccentricity, the effect of high-order
Post-Newtonian terms in the amplitude and phase, and an accurate prediction of
the transition from inspiral to plunge. For black hole ringdown, numerical
relativity will ultimately be required to determine the relative quasinormal
mode excitation, and to reduce the dimensionality of the template space in
matched filtering.Comment: 14 pages, 2 figures. Added section with conclusions and outlook.
Matches version to appear in the proceedings of 10th Annual Gravitational
Wave Data Analysis Workshop (GWDAW 10), Brownsville, Texas, 14-17 Dec 200
The performance of the LHCf detector for hadronic showers
The Large Hadron Collider forward (LHCf) experiment has been designed to use
the LHC to benchmark the hadronic interaction models used in cosmic-ray
physics. The LHCf experiment measures neutral particles emitted in the very
forward region of LHC collisions. In this paper, the performances of the LHCf
detectors for hadronic showers was studied with MC simulations and beam tests.
The detection efficiency for neutrons is from 60% to 70% above 500 GeV. The
energy resolutions are about 40% and the position resolution is 0.1 to 1.3mm
depend on the incident energy for neutrons. The energy scale determined by the
MC simulations and the validity of the MC simulations were examined using 350
GeV proton beams at the CERN-SPS.Comment: 15pages, 19 figure
- âŠ