3,977 research outputs found
Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO2
The photocatalytic and electrocatalytic conversion of CO2 has the potential to provide valuable products, such as chemicals or fuels of interest, at low cost while maintaining a circular carbon cycle. In this context, carbon dots possess optical and electrochemical properties that make them suitable candidates to participate in the reaction, either as a single component or forming part of more elaborate catalytic systems. In this review, we describe several strategies where the carbon dots participate, both with amorphous and graphitic structures, in the photocatalysis or electrochemical catalysis of CO2 to provide different carbon-containing products of interest. The role of the carbon dots is analyzed as a function of their redox and light absorption characteristics and their complementarity with other known catalytic systems. Moreover, detailed information about synthetic procedures is also reviewed
Proprieties of FBK UFSDs after neutron and proton irradiation up to 6*10e15 neq/cm2
The properties of 60-{\mu}m thick Ultra-Fast Silicon Detectors (UFSD)
detectors manufactured by Fondazione Bruno Kessler (FBK), Trento (Italy) were
tested before and after irradiation with minimum ionizing particles (MIPs) from
a 90Sr \b{eta}-source . This FBK production, called UFSD2, has UFSDs with gain
layer made of Boron, Boron low-diffusion, Gallium, Carbonated Boron and
Carbonated. The irradiation with neutrons took place at the TRIGA reactor in
Ljubljana, while the proton irradiation took place at CERN SPS. The sensors
were exposed to a neutron fluence of 4*10e14, 8*1014, 1.5*10e15, 3*10e15,
6*10e15 neq/cm2 and to a proton fluence of 9.6*10e14 p/cm2, equivalent to a
fluence of 6*10e14 neq/cm2. The internal gain and the timing resolution were
measured as a function of bias voltage at -20C. The timing resolution was
extracted from the time difference with a second calibrated UFSD in
coincidence, using the constant fraction method for both.Comment: arXiv admin note: text overlap with arXiv:1803.0269
β-Phase Morphology in Ordered Poly(9,9-dioctylfluorene) Nanopillars by Template Wetting Method
An efficient method based in template wetting is applied for fabrication of ordered Poly(9,9-dioctylfluorene) (PFO) nanopillars with β-phase morphology. In this process, nanoporous alumina obtained by anodization process is used as template. PFO nanostructures are prepared under ambient conditions via infiltration of the polymeric solution into the pores of the alumina with an average pore diameter of 225 nm and a pore depth of 500 nm. The geometric features of the resulting structures are characterized with environmental scanning electron microscopy (ESEM), luminescence fluorimeter (PL) and micro μ-X-ray diffractometer (μ-XRD). The characterization demonstrates the β-phase of the PFO in the nanopillars fabricated. Furthermore, the PFO nanopillars are characterized by Raman spectroscopy to study the polymer conformation. These ordered nanostructures can be used in optoelectronic applications such as polymer light-emitting diodes, sensors and organic solar cells
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA
Inclusive photoproduction of D*+- mesons has been measured for photon-proton
centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality
Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of
37 pb^-1. Total and differential cross sections as functions of the D*
transverse momentum and pseudorapidity are presented in restricted kinematical
regions and the data are compared with next-to-leading order (NLO) perturbative
QCD calculations using the "massive charm" and "massless charm" schemes. The
measured cross sections are generally above the NLO calculations, in particular
in the forward (proton) direction. The large data sample also allows the study
of dijet production associated with charm. A significant resolved as well as a
direct photon component contribute to the cross section. Leading order QCD
Monte Carlo calculations indicate that the resolved contribution arises from a
significant charm component in the photon. A massive charm NLO parton level
calculation yields lower cross sections compared to the measured results in a
kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
Measurement of Jet Shapes in Photoproduction at HERA
The shape of jets produced in quasi-real photon-proton collisions at
centre-of-mass energies in the range GeV has been measured using the
hadronic energy flow. The measurement was done with the ZEUS detector at HERA.
Jets are identified using a cone algorithm in the plane with a
cone radius of one unit. Measured jet shapes both in inclusive jet and dijet
production with transverse energies GeV are presented. The jet
shape broadens as the jet pseudorapidity () increases and narrows
as increases. In dijet photoproduction, the jet shapes have been
measured separately for samples dominated by resolved and by direct processes.
Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct
processes describe well the measured jet shapes except for the inclusive
production of jets with high and low . The observed
broadening of the jet shape as increases is consistent with the
predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Measurement of the diffractive structure function in deep inelastic scattering at HERA
This paper presents an analysis of the inclusive properties of diffractive
deep inelastic scattering events produced in interactions at HERA. The
events are characterised by a rapidity gap between the outgoing proton system
and the remaining hadronic system. Inclusive distributions are presented and
compared with Monte Carlo models for diffractive processes. The data are
consistent with models where the pomeron structure function has a hard and a
soft contribution. The diffractive structure function is measured as a function
of \xpom, the momentum fraction lost by the proton, of , the momentum
fraction of the struck quark with respect to \xpom, and of . The \xpom
dependence is consistent with the form \xpoma where
in all bins of and
. In the measured range, the diffractive structure function
approximately scales with at fixed . In an Ingelman-Schlein type
model, where commonly used pomeron flux factor normalisations are assumed, it
is found that the quarks within the pomeron do not saturate the momentum sum
rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
- …