215 research outputs found

    Leukocyte telomere shortening in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. Though symptom onset commonly occurs at midlife and inversely correlates with the CAG repeat expansion, age at clinical onset and progression rate are variable. In the present study we investigated the relationship between leukocyte telomere length (LTL) and HD development. LTL was measured by real-time PCR in manifest HD patients (HD, n = 62), pre-manifest HD patients (pre-HD, n = 38), and age-matched controls (n = 76). Significant LTL differences were observed between the three groups (p < .0001), with LTL values in the order: HD < pre-HD < controls. The relationship between LTL and age was different in the three groups. An inverse relationship between mean LTL and CAG repeat number was found in the pre-HD (p = .03). The overall data seem to indicate that after age 30 years, LT begins to shorten markedly in pre-HD patients according to CAG number and increasing age, up to the values observed in HD. This very suggestive picture allowed us to hypothesize that in pre-manifest HD, LTL could be a measure of time to clinical HD onset. The possible use of LTL as a reliable biomarker to track HD development and progression was evaluated and discussed

    Episodic ataxias: Faux or real?

    Get PDF
    The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined

    Dramatically different levels of cacna1a gene expression between pre-weaning wild type and leaner mice

    Get PDF
    Loss of function mutations of the CACNA1A gene, coding for the α1A subunit of P/Q type voltage-gated calcium channel (Ca(V)2.1), are responsible for Episodic Ataxia type 2 (EA2), an autosomal dominant disorder. A dominant negative effect of the EA2 mutated protein, rather than a haploinsufficiency mechanism, has been hypothesised both for protein-truncating and missense mutations. We analysed the cacna1a mRNA expression in leaner mice carrying a cacna1a mutation leading to a premature stop codon. The results showed a very low mutant mRNA expression compared to the wild type allele. Although the mutant mRNA slightly increases with age, its low level is likely due to degradation by nonsense mediated decay, a quality control mechanism that selectively degrades mRNA harbouring premature stop codons. These data have implications for EA2 in humans, suggesting a haploinsufficiency mechanism at least for some of the CACNA1A mutations leading to a premature stop codon

    Localization and genomic structure of human deoxyhypusine synthase gene on chromosome 19p13.2-distal 19p13.1

    Get PDF
    The amino acid hypusine is formed post-translationally in a single cellular protein, the eukaryotic translation initiation factor 5A, by two enzymes, namely deoxyhypusine synthase and deoxyhypusine hydroxylase. Hypusine is found in all eukaryotes and in some archaebacteria, but not in eubacteria. The deoxyhypusine synthase cDNA was cloned and mapped by fluorescence in situ hybridization on chromosome 19p13.11-p13.12. Rare cDNAs containing internal deletions were also found. We localized the deoxyhypusine synthase gene on a high resolution cosmid/BAC contig map of chromosome 19 to a region in 19p13.2-distal 19p13.1 between MANB and JUNB. Analysis of the genomic exon/intron structure of the gene coding region showed that it consists of nine exons and spans a length of 6.6kb. From observation of the genomic structure, it seems likely that the internally deleted forms of mature RNA are the result of alternative splicing, rather than of artifacts

    Leukocyte telomere length as potential biomarker of HD progression: A follow-up study

    Get PDF
    The identification of biomarkers for neurodegenerative disorders such as Huntington's disease (HD) is crucial for monitoring disease progression and therapeutic trial outcomes, especially in the pre-manifest disease stage (pre-HD). In a previous study, we observed that leukocyte telomere length (LTL) was strongly correlated with the estimated time to clinical onset in pre-HD subjects. To validate this hypothesis, we designed a follow-up study in which we analyzed LTL in 45 pre-HD stage subjects at baseline (T0) and then again after clinical onset at follow-up (T1); the follow-up interval was about 3 years, and the CAG range was 39-51 repeats; 90 peripheral blood mononuclear cell samples (PBMCs) were obtained from the Enroll-HD biorepository. In pre-HD subjects at T0, LTL was significantly reduced by 22% compared to the controls and by 14% from T0 at T1. No relationship was observed between the LTL and CAG numbers in subjects carrying different CAG repeats at T0 and at T1, suggesting that LTL reduction occurs independently of CAG number in pre-HD subjects. ROC curve analysis was used to test the validity of LTL as a potential biomarker of HD progression and showed that LTL measurement is extremely accurate in discriminating pre-HD subjects from the controls and even pre-HD from manifest HD, thus yielding a robust prognostic value in pre-HD subjects

    Alteration of stim1/orai1-mediated soce in skeletal muscle: Impact in genetic muscle diseases and beyond

    Get PDF
    Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short-and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential

    A fine physical map of the CACNA1A gene region on 19p13.1-p13.2 chromosome

    Get PDF
    The P/Q-type Ca(2+) channel alpha(1A) subunit gene (CACNA1A) was cloned on the short arm of chromosome 19 between the markers D19S221 and D19S179 and found to be responsible for Episodic Ataxia type 2, Familial Hemiplegic Migraine and Spinocerebellar Ataxia type 6. This region was physically mapped by 11 cosmid contigs spanning about 1. 4Mb, corresponding to less than 70% of the whole region. The cosmid contig used to characterize the CACNA1A gene accounted only for the coding region of the gene lacking, therefore, the promoter and possible regulation regions. The present study improves the physical map around and within the CACNA1A by giving a complete cosmid or BAC contig coverage of the D19S221-D19S179 interval. A number of new STSs, whether polymorphic or not, were characterized and physically mapped within this region. Four ESTs were also assigned to cosmids belonging to specific contigs

    A Novel De Novo Mutation of the TITF1/NKX2-1 Gene Causing Ataxia, Benign Hereditary Chorea, Hypothyroidism and a Pituitary Mass in a UK Family and Review of the Literature.

    Get PDF
    Benign hereditary chorea (BHC) is a rare autosomal dominant condition characterized by early onset, non-progressive chorea, usually caused by mutations in the thyroid transcription factor-1 gene (TITF1). We describe a novel mutation arising de novo in a proband presenting in infancy with delayed walking and ataxia. She later developed chorea, then hypothyroidism and a large cystic pituitary mass. Her daughter presented in infancy with delayed walking and ataxia and went on to develop non-progressive chorea and a hormonally inactive cystic pituitary mass. Mutational analysis of the whole coding region of the TITF1 gene was undertaken and compared with a population study of 160 control subjects. This showed that both affected subjects have a heterozygous A > T substitution at nucleotide 727 of the TITF1 gene changing lysine to a stop codon at residue 211. Genetic analysis of parents and siblings of the proband confirmed that the mutation arose de novo in the proband. The mutated lysine is an evolutionarily highly conserved amino acid in the protein homoeodomain (HD) where most point mutations associated with BHC are located. The range of mutations in BHC is reviewed with particular emphasis on pituitary abnormalities. Cystic pituitary masses and abnormalities of the sella turcica are reported in just 6.4 % of published cases. This is a new nonsense mutation associated with ataxia, benign chorea and pituitary abnormalities which further extends the phenotype of this condition. Mutational screening of TITF1 is important in cases of sporadic or dominant juvenile-onset ataxia, with mild chorea where no other cause is found, particularly if pituitary abnormalities are seen on imaging

    Leukocyte telomere length variability as a potential biomarker in patients with polyQ diseases

    Get PDF
    SCA1, SCA2, and SCA3 are the most common forms of SCAs among the polyglutamine disorders, which include Huntington's Disease (HD). We investigated the relationship between leukocyte telomere length (LTL) and the phenotype of SCA1, SCA2, and SCA3, comparing them with HD. The results showed that LTL was significantly reduced in SCA1 and SCA3 patients, while LTL was significantly longer in SCA2 patients. A significant negative relationship between LTL and age was observed in SCA1 but not in SCA2 subjects. LTL of SCA3 patients depend on both patient's age and disease duration. The number of CAG repeats did not affect LTL in the three SCAs. Since LTL is considered an indirect marker of an inflammatory response and oxidative damage, our data suggest that in SCA1 inflammation is present already at an early stage of disease similar to in HD, while in SCA3 inflammation and impaired antioxidative processes are associated with disease progression. Interestingly, in SCA2, contrary to SCA1 and SCA3, the length of leukocyte telomeres does not reduce with age. We have observed that SCAs and HD show a differing behavior in LTL for each subtype, which could constitute relevant biomarkers if confirmed in larger cohorts and longitudinal studies

    Ergogenic effect of bcaas and l-alanine supplementation: Proof-of-concept study in a murine model of physiological exercise

    Get PDF
    Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution
    • …
    corecore