103 research outputs found

    Variational Calculations of the 12C^{12}C Nucleus Structure in a 3α\alpha Model Using a Deep Potential with Forbidden States

    Full text link
    The energy spectrum of the 12C^{12}C nucleus with (Jπ,T)=(0+,0)(J^{\pi}, T)=(0^+,0) and (2+,0)(2^+,0) is investigated in the framework of the multicluster dynamical model by using a deep αα\alpha \alpha-potential with forbidden states in the S and D waves. A very high sensitivity of the compact ground and first excited 21+2^+_1 states energy levels to the description of the two-body forbidden states wave functions has been estabilished. It is shown also that the chosen method of orthogonalizing pseudopotentials yields convergent results for the energies of the excited (02+,0)(0^+_2,0) and (03+,0)(0^+_3,0) states of the 12C^{12}C nucleus with a well developed cluster like structure

    Analysis of the 6^6He β\beta decay into the α+d\alpha+d continuum within a three-body model

    Full text link
    The beta-decay process of the 6^6He halo nucleus into the alpha+d continuum is studied in a three-body model. The 6^6He nucleus is described as an alpha+n+n system in hyperspherical coordinates on a Lagrange mesh. The convergence of the Gamow-Teller matrix element requires the knowledge of wave functions up to about 30 fm and of hypermomentum components up to K=24. The shape and absolute values of the transition probability per time and energy units of a recent experiment can be reproduced very well with an appropriate alpha+d potential. A total transition probability of 1.6E-6 s−1^{-1} is obtained in agreement with that experiment. Halo effects are shown to be very important because of a strong cancellation between the internal and halo components of the matrix element, as observed in previous studies. The forbidden bound state in the alpha+d potential is found essential to reproduce the order of magnitude of the data. Comments are made on R-matrix fits.Comment: 18 pages, 9 figures. Accepted for publication in Phys.Rev.

    Relativistic structure of one-meson and one-gluon exchange forces and the lower excitation spectrum of the Nucleon and the Delta

    Full text link
    The lower excitation spectrum of the nucleon and Δ\Delta is calculated in a relativistic chiral quark model. Corrections to the baryon mass spectrum from the second order self-energy and exchange diagrams induced by pion and gluon fields are estimated in the field -theoretical framework. Convergent results for the self-energy terms are obtained when including the intermediate quark and antiquark states with a total momentum up to j=25/2j=25/2. Relativistic one-meson and color-magnetic one-gluon exchange forces are shown to generate spin 0, 1, 2, etc. operators, which couple the lower and the upper components of the two interacting valence quarks and yield reasonable matrix elements for the lower excitation spectrum of the Nucleon and Delta. The only contribution to the ground state nucleon and Δ\Delta comes from the spin 1 operators, which correspond to the exchanged pion or gluon in the l=1 orbit, thus indicating, that the both pion exchange and color-magnetic gluon exchange forces can contribute to the spin of baryons. Is is shown also that the contribution of the color-electric component of the gluon fields to the baryon spectrum is enormously large (more than 500 MeV with a value αs=0.65\alpha_s=0.65) and one needs to restrict to very small values of the strong coupling constant or to exclude completely the gluon-loop corrections to the baryon spectrum. With this restriction, the calculated spectrum reproduces the main properties of the data, however needs further contribution from the two-pion exchange and instanton induced exchange (for the nucleon sector) forces in consistence with the realistic NN-interaction models.Comment: 15 pages, 4 figures, 7 table
    • …
    corecore