822 research outputs found

    Mechanical oscillations in lasing microspheres

    Get PDF
    We investigate the feasibility of activating coherent mechanical oscillations in lasing microspheres by modulating the laser emission at a mechanical eigenfrequency. To this aim, 1.5% Nd3+:Barium-Titanium-Silicate microspheres with diameters around 50 {\mu}m were used as high quality factor (Q>10^6) whispering gallery mode lasing cavities. We have implemented a pump-and-probe technique in which the pump laser used to excite the Nd3+ ions is focused on a single microsphere with a microscope objective and a probe laser excites a specific optical mode with the evanescent field of a tapered fibre. The studied microspheres show monomode and multi-mode lasing action, which can be modulated in the best case up to 10 MHz. We have optically transduced thermally-activated mechanical eigenmodes appearing in the 50-70 MHz range, the frequency of which decreases with increasing the size of the microspheres. In a pump-and-probe configuration we observed modulation of the probe signal up to the maximum pump modulation frequency of our experimental setup, i.e., 20 MHz. This modulation decreases with frequency and is unrelated to lasing emission, pump scattering or thermal effects. We associate this effect to free-carrier-dispersion induced by multiphoton pump light absorption. On the other hand, we conclude that, in our current experimental conditions, it was not possible to resonantly excite the mechanical modes. Finally, we discuss on how to overcome these limitations by increasing the modulation frequency of the lasing emission and decreasing the frequency of the mechanical eigenmodes displaying a strong degree of optomechanical coupling.Comment: 17 pages, 5 figure

    A novel high resolution contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry

    Get PDF
    We present a novel high resolution contactless technique for thermal conductivity determination and thermal field mapping based on creating a thermal distribution of phonons using a heating laser, while a second laser probes the local temperature through the spectral position of a Raman active mode. The spatial resolution can be as small as 300300 nm, whereas its temperature accuracy is ±2\pm 2 K. We validate this technique investigating the thermal properties of three free-standing single crystalline Si membranes with thickness of 250, 1000, and 2000 nm. We show that for 2-dimensional materials such as free-standing membranes or thin films, and for small temperature gradients, the thermal field decays as T(r)ln(r)T(r) \propto ln(r) in the diffusive limit. The case of large temperature gradients within the membranes leads to an exponential decay of the thermal field, Texp[Aln(r)]T \propto exp[-A \cdot ln(r)]. The results demonstrate the full potential of this new contactless method for quantitative determination of thermal properties. The range of materials to which this method is applicable reaches far beyond the here demonstrated case of Si, as the only requirement is the presence of a Raman active mode

    Lifetimes of Confined Acoustic Phonons in Ultra-Thin Silicon Membranes

    Get PDF
    We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultra-thin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from \sim 4.7 ns to 5 ps with decreasing membrane thickness from \sim 194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures

    (2+1)-dimensional photonic crystals from Langmuir-Blodgett colloidal multilayers

    Get PDF
    Angle-resolved transmission spectra of multilayers of two-dimensional colloidal crystals prepared by the Langmuir-Blodgett technique have been studied. In contrast to the light diffraction in three-dimensional colloidal crystals, optical spectra revealed only very weak correlation between layers in the Langmuir-Blodgett multilayers. Two reasons for the observed transmission minima have been identified: the diffraction at a stack of layers and the scattering of the incident beam by guided modes of the two-dimensional colloidal crystals. (c) 2006 American Institute of Physics. (DOI:10.1063/1.2234568

    On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in R3\mathbb{R}^3

    Get PDF
    In this paper we use the blow up method of Dumortier and Roussarie \cite{dumortier_1991,dumortier_1993,dumortier_1996}, in the formulation due to Krupa and Szmolyan \cite{krupa_extending_2001}, to study the regularization of singularities of piecewise smooth dynamical systems \cite{filippov1988differential} in R3\mathbb R^3. Using the regularization method of Sotomayor and Teixeira \cite{Sotomayor96}, first we demonstrate the power of our approach by considering the case of a fold line. We quickly recover a main result of Bonet and Seara \cite{reves_regularization_2014} in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided a certain non-resonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance.Comment: To appear in SIAM Journal of Applied Dynamical System

    Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals

    Get PDF
    The optical transmission of photonic crystals self-assembled from colloidal nanospheres in opals and assembled from two-dimensional colloidal crystals in a periodic stack by the Langmuir-Blodgett technique has been compared. Elimination of all related zero order diffraction resonances other than that from growth planes and broadening and deepening of the remaining one-dimensional diffraction resonance have been observed for samples prepared by the Langmuir-Blodgett approach, which are explained in terms of the partial disorder of a crystal lattice. (c) 2007 American Institute of Physics.(DOI:10.1063/1.2714198

    Understanding of transmission in the range of high-order photonic bands in thin opal film

    Get PDF
    Diffraction in the face centered cubic lattice cannot explain some minima observed in the transmission spectra of self-assembled opal films. Here, we compared them with minima observed in the transmission spectra of a hexagonal close packed monolayer of spheres of the same diameter. The identity of the sphere packing on the surface of the opal film and in the sphere monolayer was demonstrated by the light diffraction at the sample surfaces. It was shown that excitation of surface propagating modes in the opal film is responsible for the formation of additional minima in opal film transmission. (C) 2008 American Institute of Physics. (DOI: 10.1063/1.2920443

    Localized thinning for strain concentration in suspended germanium membranes and optical method for precise thickness measurement

    Get PDF
    We deposited Ge layers on (001) Si substrates by molecular beam epitaxy and used them to fabricate suspended membranes with high uniaxial tensile strain. We demonstrate a CMOS-compatible fabrication strategy to increase strain concentration and to eliminate the Ge buffer layer near the Ge/Si hetero-interface deposited at low temperature. This is achieved by a two-steps patterning and selective etching process. First, a bridge and neck shape is patterned in the Ge membrane, then the neck is thinned from both top and bottom sides. Uniaxial tensile strain values higher than 3% were measured by Raman scattering in a Ge membrane of 76 nm thickness. For the challenging thickness measurement on micrometer-size membranes suspended far away from the substrate a characterization method based on pump-and-probe reflectivity measurements was applied, using an asynchronous optical sampling technique.EC/FP7/628197/EU/Heat Propagation and Thermal Conductivity in Nanomaterials for Nanoscale Energy Management/HEATPRONAN
    corecore