41 research outputs found
AEROBIC AND ANAEROBIC SCALING IN FISH
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75506/1/j.1469-185X.1991.tb01134.x.pd
The effect of food availability, age or size on the RNA/DNA ratio of individually measured herring larvae: laboratory calibration
RNA/DNA ratios in individual herring (Clupea harengus) larvae (collected from Kiel Bay, Baltic Sea, in 1989) were measured and proved suitable for determining nutritional status. Significant differences between fed and starving larvae appeared after 3 to 4 d of food deprivation in larvae older than 10 d after hatching. The RNA/DNA ratio showed an increase with age or length of the larvae and was less pronounced in starving larvae compared to fed larvae. The individual variability of RNA/DNA ratios in relation to larval length of fed larvae and of larvae deprived of food for intervals of 6 to 9 d is presented. Based on the length dependency and the individual variability found within the RNA/DNA ratios, a laboratory calibration is given to determine whether a larva caught in the field has been starving or not. An example for a field application is shown
Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations
Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung
10.1371/journal.pone.0024019PLoS ONE68
Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish
In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled "gating" mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation
Exposure to fluctuating salinity enhances free amino acid accumulation in Tigriopus californicus (Copepoda)
Intracellular concentrations of free amino acids (FAA) in the intertidal copepod Tigriopus californicus increase in response to hyperosmotic stress and decrease in response to hypo-osmotic stress. The purpose of this study was to determine if exposure to repeated bouts of osmotic stress resulted in changes in FAA accumulation or the degree of FAA retention in subsequent episodes. Five groups of T. californicus were exposed for 22 days to a fluctuating salinity regime which consisted of 24 h at 100% seawater followed by 24 h at either 90, 80, 70, 60 or 50% seawater (11 cycles). After the tenth exposure to 100% seawater, individuals from each treatment group were analyzed for alanine and proline concentration. Alanine and proline accumulation generally increased in proportion to the osmotic stress up to 60–100% seawater — additional osmotic stress failed to increase total accumulation. Prior exposure to fluctuating salinity increased the extent of alanine and proline retention observed upon transfer to a hypo-osmotic medium. The treatment group which had experienced the most extreme fluctuation (50–100% seawater) retained alanine and proline levels approximately 10- and 20-fold higher, respectively, than controls. A less severe salinity fluctuation was required to elicit this response for alanine (90–100% seawater) than for proline (60–100% seawater). Previous exposure to fluctuating salinity also resulted in increased alanine and proline accumulation in subsequent episodes of hyperosmotic stress. 24 h after transfer from 50 to 100% seawater, alanine and proline levels in the conditioned copepods were approximately 3- and 7-fold higher, respectively, than in copepods which had not been cycled. This facilitation in alanine and proline accumulation occurred after 10 and 11 cycles, respectively. Of the increased accumulation in alanine and proline, 7.0% and 22.5%, respectively, could be accounted for by the higher degree of FAA retention while under hypo-osmotic conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47130/1/360_2004_Article_BF00692733.pd