1,949 research outputs found

    Information complexity of the AND function in the two-Party, and multiparty settings

    Full text link
    In a recent breakthrough paper [M. Braverman, A. Garg, D. Pankratov, and O. Weinstein, From information to exact communication, STOC'13] Braverman et al. developed a local characterization for the zero-error information complexity in the two party model, and used it to compute the exact internal and external information complexity of the 2-bit AND function, which was then applied to determine the exact asymptotic of randomized communication complexity of the set disjointness problem. In this article, we extend their results on AND function to the multi-party number-in-hand model by proving that the generalization of their protocol has optimal internal and external information cost for certain distributions. Our proof has new components, and in particular it fixes some minor gaps in the proof of Braverman et al

    Maximum likelihood estimation of cloud height from multi-angle satellite imagery

    Full text link
    We develop a new estimation technique for recovering depth-of-field from multiple stereo images. Depth-of-field is estimated by determining the shift in image location resulting from different camera viewpoints. When this shift is not divisible by pixel width, the multiple stereo images can be combined to form a super-resolution image. By modeling this super-resolution image as a realization of a random field, one can view the recovery of depth as a likelihood estimation problem. We apply these modeling techniques to the recovery of cloud height from multiple viewing angles provided by the MISR instrument on the Terra Satellite. Our efforts are focused on a two layer cloud ensemble where both layers are relatively planar, the bottom layer is optically thick and textured, and the top layer is optically thin. Our results demonstrate that with relative ease, we get comparable estimates to the M2 stereo matcher which is the same algorithm used in the current MISR standard product (details can be found in [IEEE Transactions on Geoscience and Remote Sensing 40 (2002) 1547--1559]). Moreover, our techniques provide the possibility of modeling all of the MISR data in a unified way for cloud height estimation. Research is underway to extend this framework for fast, quality global estimates of cloud height.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS243 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Surface Operators in N=2 Abelian Gauge Theory

    Full text link
    We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly prove that for any embedding of surface operators in a general, twisted N=2 pure abelian theory on an arbitrary four-manifold, the parameters transform naturally under the SL(2,Z) duality of the theory. However, for nontrivially-embedded surface operators, exact S-duality holds if and only if the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality holds up to a c-number at most, regardless. Nevertheless, this observation sets the stage for a physical proof of a remarkable mathematical result by Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson invariants solely in terms of the ordinary Donaldson invariants--which, will appear, among other things, in forthcoming work. As a prelude to that, the effective interaction on the corresponding u-plane will be computed. In addition, the dependence on second Stiefel-Whitney classes and the appearance of a Spin^c structure in the associated low-energy Seiberg-Witten theory with surface operators, will also be demonstrated. In the process, we will stumble upon an interesting phase factor that is otherwise absent in the "unramified" case.Comment: 46 pages. Minor refinemen

    Bohl-Perron type stability theorems for linear difference equations with infinite delay

    Full text link
    Relation between two properties of linear difference equations with infinite delay is investigated: (i) exponential stability, (ii) \l^p-input \l^q-state stability (sometimes is called Perron's property). The latter means that solutions of the non-homogeneous equation with zero initial data belong to \l^q when non-homogeneous terms are in \l^p. It is assumed that at each moment the prehistory (the sequence of preceding states) belongs to some weighted \l^r-space with an exponentially fading weight (the phase space). Our main result states that (i) ⇔\Leftrightarrow (ii) whenever (p,q)≠(1,∞)(p,q) \neq (1,\infty) and a certain boundedness condition on coefficients is fulfilled. This condition is sharp and ensures that, to some extent, exponential and \l^p-input \l^q-state stabilities does not depend on the choice of a phase space and parameters pp and qq, respectively. \l^1-input \l^\infty-state stability corresponds to uniform stability. We provide some evidence that similar criteria should not be expected for non-fading memory spaces.Comment: To be published in Journal of Difference Equations and Application

    Spatial and temporal characterization of a Bessel beam produced using a conical mirror

    Full text link
    We experimentally analyze a Bessel beam produced with a conical mirror, paying particular attention to its superluminal and diffraction-free properties. We spatially characterized the beam in the radial and on-axis dimensions, and verified that the central peak does not spread over a propagation distance of 73 cm. In addition, we measured the superluminal phase and group velocities of the beam in free space. Both spatial and temporal measurements show good agreement with the theoretical predictions.Comment: 5 pages, 6 figure

    Mesoscopic Superconducting Disc with Short-Range Columnar Defects

    Full text link
    Short-range columnar defects essentially influence the magnetic properties of a mesoscopic superconducting disc.They help the penetration of vortices into the sample, thereby decrease the sample magnetization and reduce the upper critical field. Even the presence of weak defects split a giant vortex state (usually appearing in a clean disc in the vicinity of the transition to a normal state) into a number of vortices with smaller topological charges. In a disc with a sufficient number of strong enough defects vortices are always placed onto defects. The presence of defects lead to the appearance of additional magnetization jumps related to the redistribution of vortices which are already present on the defects and not to the penetration of new vortices.Comment: 14 pgs. RevTex, typos and figures corrected. Submitted to Phys. Rev.

    On the six-dimensional origin of the AGT correspondence

    Full text link
    We argue that the six-dimensional (2,0) superconformal theory defined on M \times C, with M being a four-manifold and C a Riemann surface, can be twisted in a way that makes it topological on M and holomorphic on C. Assuming the existence of such a twisted theory, we show that its chiral algebra contains a W-algebra when M = R^4, possibly in the presence of a codimension-two defect operator supported on R^2 \times C \subset M \times C. We expect this structure to survive the \Omega-deformation.Comment: References added. 14 page

    Nonrelativistic hydrogen type stability problems on nonparabolic 3-manifolds

    Full text link
    We extend classical Euclidean stability theorems corresponding to the nonrelativistic Hamiltonians of ions with one electron to the setting of non parabolic Riemannian 3-manifolds.Comment: 20 pages; to appear in Annales Henri Poincar
    • …
    corecore