130 research outputs found

    Graphene Oxidation: Thickness Dependent Etching and Strong Chemical Doping

    Full text link
    Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of ~0.5 eV. These oxygen species partially desorb in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O2 atmosphere at room temperature. This strongly doped graphene is very different than graphene oxide made by mineral acid attack.Comment: 15 pages, 5 figure

    The influenza epidemic in Russia during the 2014–2015 season

    Get PDF
    The goal of this study was to compare the data on the intensity of the influenza A(H3N2) and B epidemic (especially the death toll) in the 2014–2015 season with the previous epidemic of the 2013-2014 season. The data on weekly morbidity, hospitalization, deaths from influenza, and acute respiratory diseases in different age groups of inhabitants of 59 cities located in 7 Federal districts of the Russian Federation were collected using the database of the Research Institute of Influenza.Analysis of this data showed that the influenza epidemic in 2014-2015 began earlier (in December) compared to the epidemic of 2013-2014, and spread mainly from Europe through Russia to the East. The intensity of the epidemic of 2014-2015 was higher compared to the previous one. The epidemic was more prevalent by regions and cities and a wider engagement of different age groups (except children up to 2 years of age) was observed. At the peak of the epidemic, the morbidity level was higher, the average duration of the epidemic was longer, and the number of patients among cities’ inhabitants (especially among children 7-14 years of age and adults) was higher than in the previous season. The rates of hospitalization with influenza and acute respiratory viral infections (ARVI) among patients older than 65 years were also higher (1.4 times) as well as the frequency of hospitalization with a diagnosis of “influenza” (2.7 times) and the number of deaths from laboratory confirmed influenza (1.8 times).Although the influenza pandemic virus strain A(H1N1)pdm09 was not the main causative agent of the 2015 epidemic and was distributed sporadically it still remained the leading cause of deaths from influenza in the course of this epidemic (45.5% of all cases). The deaths associated with this strain were recorded only in the European part of Russian Federation.The goal of this study was to compare the data on the intensity of the influenza A(H3N2) and B epidemic (especially the death toll) in the 2014–2015 season with the previous epidemic of the 2013-2014 season. The data on weekly morbidity, hospitalization, deaths from influenza, and acute respiratory diseases in different age groups of inhabitants of 59 cities located in 7 Federal districts of the Russian Federation were collected using the database of the Research Institute of Influenza. Analysis of this data showed that the influenza epidemic in 2014-2015 began earlier (in December) compared to the epidemic of 2013-2014, and spread mainly from Europe through Russia to the East. The intensity of the epidemic of 2014-2015 was higher compared to the previous one. The epidemic was more prevalent by regions and cities and a wider engagement of different age groups (except children up to 2 years of age) was observed. At the peak of the epidemic, the morbidity level was higher, the average duration of the epidemic was longer, and the number of patients among cities’ inhabitants (especially among children 7-14 years of age and adults) was higher than in the previous season. The rates of hospitalization with influenza and acute respiratory viral infections (ARVI) among patients older than 65 years were also higher (1.4 times) as well as the frequency of hospitalization with a diagnosis of “influenza” (2.7 times) and the number of deaths from laboratory confirmed influenza (1.8 times). Although the influenza pandemic virus strain A(H1N1)pdm09 was not the main causative agent of the 2015 epidemic and was distributed sporadically it still remained the leading cause of deaths from influenza in the course of this epidemic (45.5% of all cases). The deaths associated with this strain were recorded only in the European part of Russian Federation

    Features of the natural course of subclinical hypothyroidism in young athletes

    Get PDF
    Objective: to assess the natural course of subclinical hypothyroidism in young athletes.Methods: In the prospective single-center uncontrolled study, data from 3,062 outpatient records of young athletes (members of the Russian national team) of both sexes (middle age — 15 [14; 16] years) and underwent medical examination in the period from January 2021 to September 2022 were studied. All athletes were divided into 2 groups according to the presence of subclinical hypothyroidism (an increase in the level of thyroid-stimulating hormone from 5 to 10 mUn/l with a normal level of T4 free). During a dynamic follow-up (1 year), athletes with subclinical hypothyroidism underwent a repeated study of the concentration of thyroid-stimulating hormone, free thyroxine and antibodies to thyroperoxidase.Results: Signs of subclinical hyperthyroidism were found in 58 young athletes (30 boys (51.7 %) and 28 (48.3 %) girls). During dynamic observation with continued habitual physical activity, spontaneous normalization of the level of thyroid-stimulating hormone was observed in 74 % of young athletes. At the same time, normalization of thyroid-stimulating hormone in girls was observed less often compared to boys (p = 0,272). In no case did clinically pronounced hypothyroidism develop.Conclusion: The majority of young male and female athletes with subclinical hypothyroidism have spontaneous normalization of hormonal profile against the background of persistent physical and psycho-emotional stress. The data obtained make it possible, subject to the possibility of dynamic observation, to recommend doctors working with young elite athletes not to prescribe hormonal replacement therapy and not to modify the usual lifestyle

    STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride

    Full text link
    Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201

    Vitamin D (steroid hormone) and the nervous system diseases (literature review)

    Get PDF
    The present review aims to summarize the activities of vitamin D effects on the nervous system and to clarify a vitamin D role in brain diseases, in the pathogenesis or as a serum biomarker for the disease development and severity. Objective: correlation between chronic nervous system diseases and vitamin D level. Methods: a literature research in PubMed and in Russian electronic resources by keywords: vitamin D, brain diseases, chronic nervous system diseases. Results. Vitamin D as a neurosteroid hormone stimulates cerebral activity in both adult and embryonic brain regulates the activity of neural circuits which are responsible for locomotor, reward-dependent and emotional behavior. Patients with autism spectrum disorders, schizophrenia, Alzheimer disease, multiple sclerosis, Parkinson disease and sleep disorders have been shown to have low level of vitamin D. Discussion. Data are controversial, a further study of vitamin D hypovitaminosis significance is essential for the nervous system chronic diseases manifestation and evaluation of the vitamin D dietary supplement efficiency in patients with the nervous system pathology

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Electronic properties of bilayer and multilayer graphene

    Full text link
    We study the effects of site dilution disorder on the electronic properties in graphene multilayers, in particular the bilayer and the infinite stack. The simplicity of the model allows for an easy implementation of the coherent potential approximation and some analytical results. Within the model we compute the self-energies, the density of states and the spectral functions. Moreover, we obtain the frequency and temperature dependence of the conductivity as well as the DC conductivity. The c-axis response is unconventional in the sense that impurities increase the response for low enough doping. We also study the problem of impurities in the biased graphene bilayer.Comment: 36 pages, 42 figures, references adde

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9±2)×1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012

    Snap-through instability of graphene on substrates

    Get PDF
    We determine the graphene morphology regulated by substrates with herringbone and checkerboard surface corrugations. As the graphene/substrate interfacial bonding energy and the substrate surface roughness vary, the graphene morphology snaps between two distinct states: 1) closely conforming to the substrate and 2) remaining nearly flat on the substrate. Such a snapthrough instability of graphene can potentially lead to desirable electronic properties to enable graphene-based devices.Comment: 13 pages, 4 figures; Nanoscale Research Letters, in press, 200

    Compression Behavior of Single-layer Graphene

    Full text link
    Central to most applications involving monolayer graphene is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphene. Most of the experimental work is indeed limited to bending of single flakes in air and the stretching of flakes up to typically ~1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphene into various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. In spite of the infinitely small thickness of the monolayers, the results show that graphene embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (> 0.2) the buckling strain is of the order of -0.5% to -0.6%. However, for l/w <0.2 no failure is observed for strains even higher than -1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than six orders of magnitude compared to suspended graphene in air
    corecore